MPRI – Computation Geometry and Topology

Nearest Neighbor Search

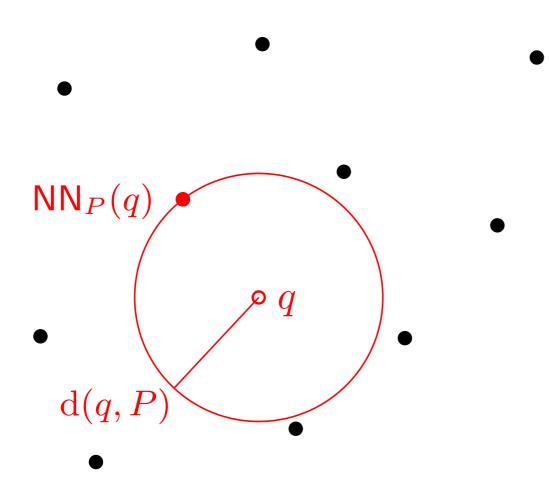
Steve Oudot

(steve.oudot@inria.fr)

Nearest-Neighbor problem

pre-processing input: ${\cal P}$

Nearest-Neighbor problem

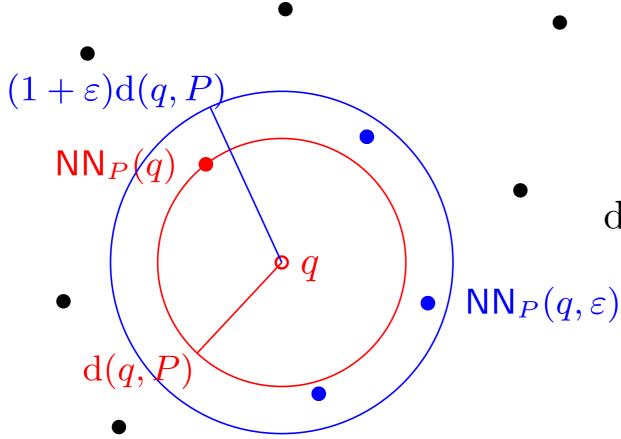


- pre-processing input: ${\cal P}$
- query input: q

goal: find $p \in NN_P(q)$

$$d(q, p) = \min_{p' \in P} d(q, p')$$

ε -Nearest-Neighbor problem



- pre-processing input: $P\!\!\!,\,\varepsilon$
- query input: q

goal: find $p \in NN_P(q, \varepsilon)$

 $d(q, p) \le (1 + \varepsilon) \min_{p' \in P} d(q, p')$

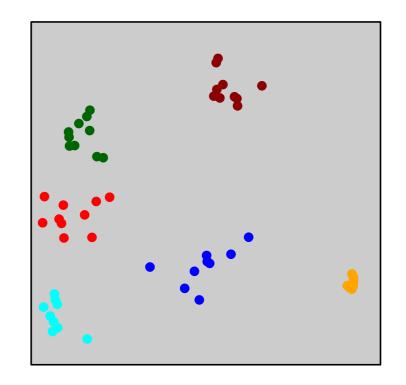
Nearest-Neighbor problem

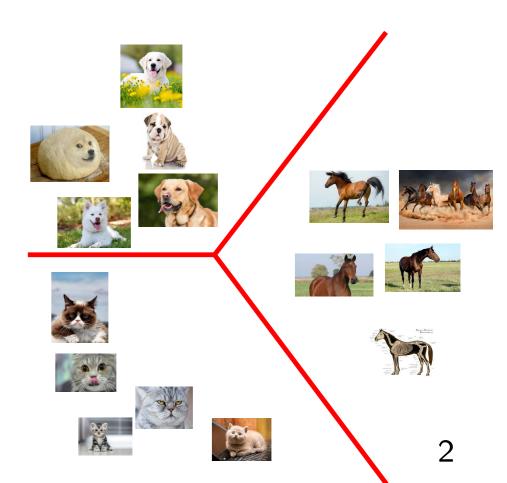
Variants:

- \bullet k-nearest neighbors: find the k points closest to q in P
- r-nearest neighbor: find a point $p \in P$ such that $d(q, p) \leq r$
- metrics:
 - ▶ ℓ_2 , ℓ_p , ℓ_∞
 - ► strings: Hamming distance
 - ▶ images: optimal transport distances
 - ▶ point clouds: (Gromov-)Hausdorff distances
 - ► proteins: RMSD distances

Applications

- clustering, e.g. k-means, mean-shift
- information retrieval in databases
- information theory, e.g. vector quantization
- supervised learning, e.g. NN-classifiers





Linear scan

Input: $P = \{p_1, \cdots, p_n\} \subset \mathbb{R}^d$, $q \in \mathbb{R}^d$

 $\mathrm{d}_{\min}:=\infty$ (dist. to nearest neighbor among the pts viewed so far)

for i = 1 to n do:

 $d_{\min} := \min \{ d_{\min}, d(q, p_i) \}$

return d_{\min} or index *i* that achieves d_{\min}

Linear scan

Input: $P = \{p_1, \cdots, p_n\} \subset \mathbb{R}^d$, $q \in \mathbb{R}^d$

 $\mathrm{d}_{\min} := \infty$ (dist. to nearest neighbor among the pts viewed so far)

for i = 1 to n do:

 $d_{\min} := \min \{ d_{\min}, d(q, p_i) \}$

return d_{\min} or index *i* that achieves d_{\min}

Complexity:

space: O(dn) - n points, d coordinates each time: O(dn) - n iterations, 1 distance computation each

Strategy and Challenges

Strategy:

▶ preprocess the n point of P in ℝ^d into some data structure DS for fast nearest-neighbor queries answers

Ideal wish list:

- \blacktriangleright DS should have linear size in n and polynomial size in d
- \blacktriangleright a query should take sublinear time in n and polynomial time in d
 - e.g. binary search trees in d = 1: linear size, $O(\log n)$ time

Core difficulties:

- ► *Curse of dimensionality*: hard to outperform linear scan in high *d*
- ► Interpretation: meaningfulness of distances in high *d* (concentration)

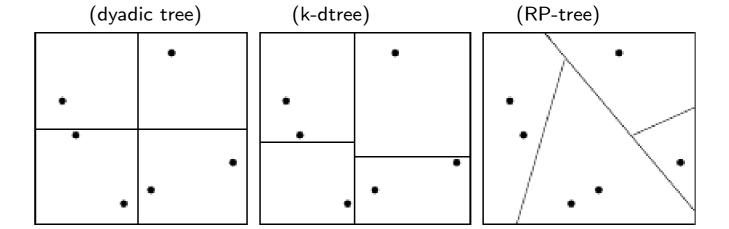
Approaches

• Linear scan

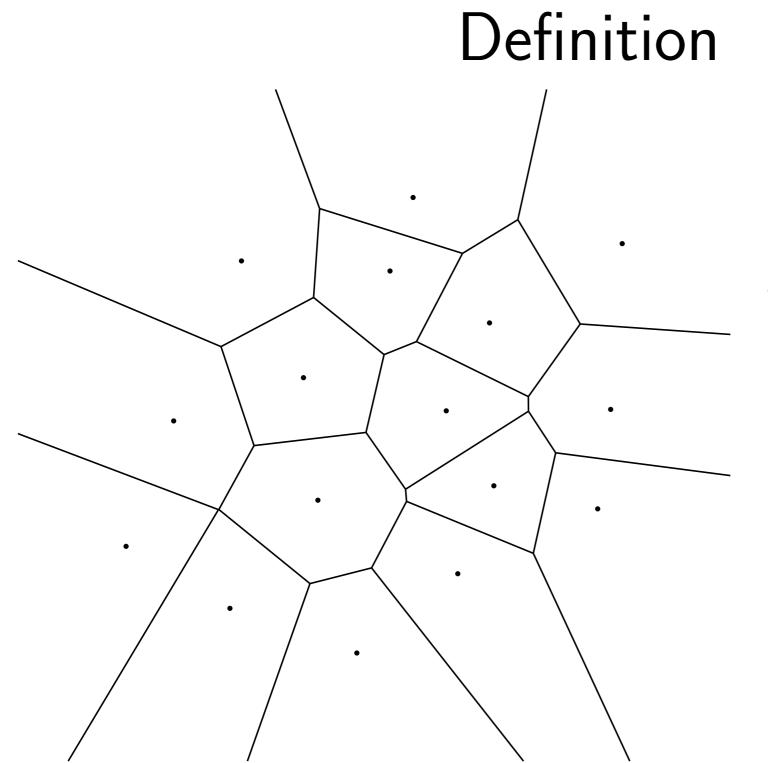
exact NN

search

- Voronoi diagrams
- Tree-like data structures
 - quadtrees (split at midpoint in all coordinates)
 - ▶ tries / dyadic trees (split at mean, cycle around coordinates)
 - kd-trees (split at median, cycle around coordinates)
 - Random Projection trees (split at median along random coordinates)
 - ▶ PCA trees (split at median along 1st eigenvector of covariance matrix)
- NN e Locality Sensitive Hashing



Voronoi diagrams



$V(p) := \{ q \in \mathbb{R}^d \mid p \in \mathrm{NN}_P(q) \}$

affine diagram

Definition

$V(p) := \{ q \in \mathbb{R}^d \mid p \in \mathrm{NN}_P(q) \}$

affine diagram

computed/stored via dual

(Delaunay triangulation)

Definition

$V(p) := \{ q \in \mathbb{R}^d \mid p \in \mathrm{NN}_P(q) \}$

affine diagram

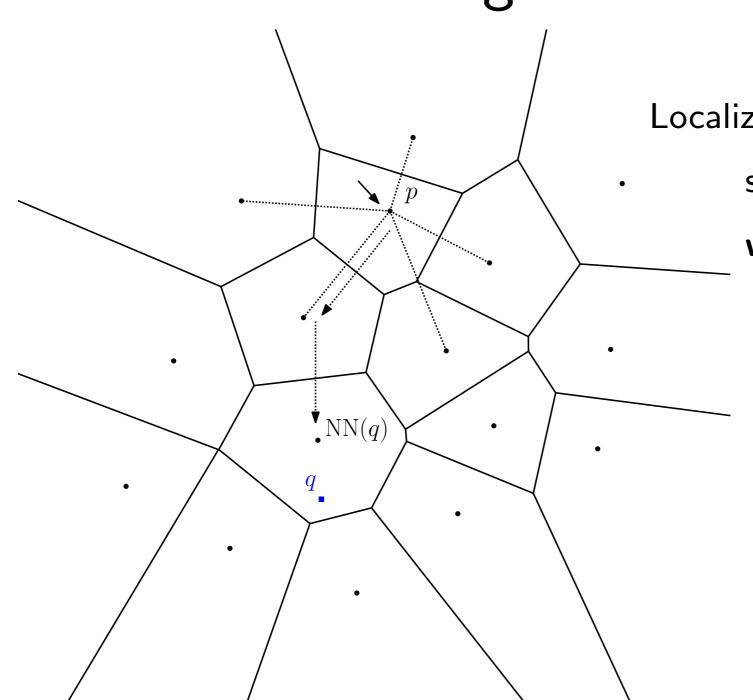
computed/stored via dual (Delaunay triangulation)

size:

- worst case:
$$\Theta\left(n^{\lceil d/2\rceil}\right)$$

Upper Bound Thm [McMullen'70]

- average case (unif. distrib.): $2^{O(d \log d)} n$



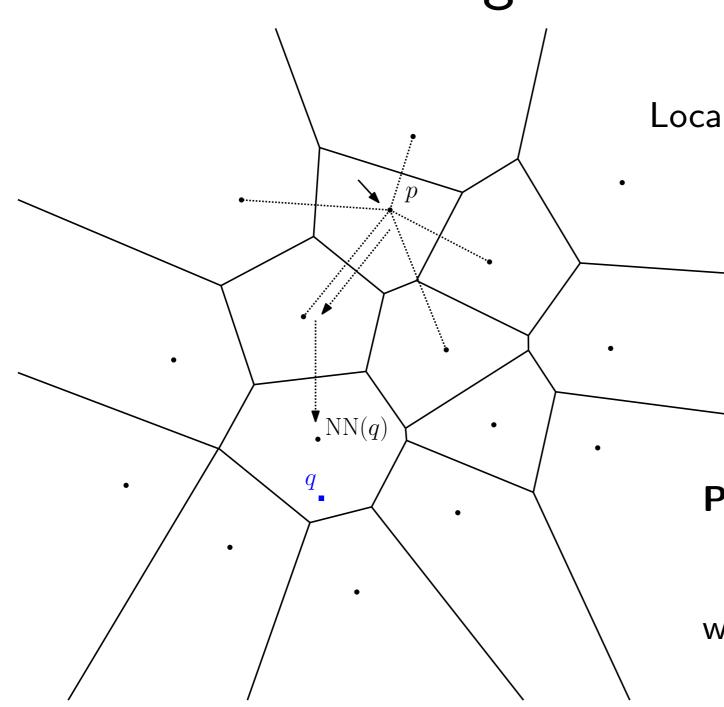
Localizing by walk:

start from $p \in P$ random

while $\exists p' \text{ neighb. of } p \text{ in Del.}$

s.t. d(q, p') < d(q, p):

 $\mathsf{update}\ p:=p'$



Localizing by walk:

start from $p \in P$ random

while $\exists p' \text{ neighb. of } p \text{ in Del.}$

s.t. d(q, p') < d(q, p):

 $\mathsf{update}\ p:=p'$

Prop: Del. neighborhood is complete

walk time:

worst case: $O(|\mathsf{Del}(P)|)$

avg. case (2d): $O(\sqrt{n})$

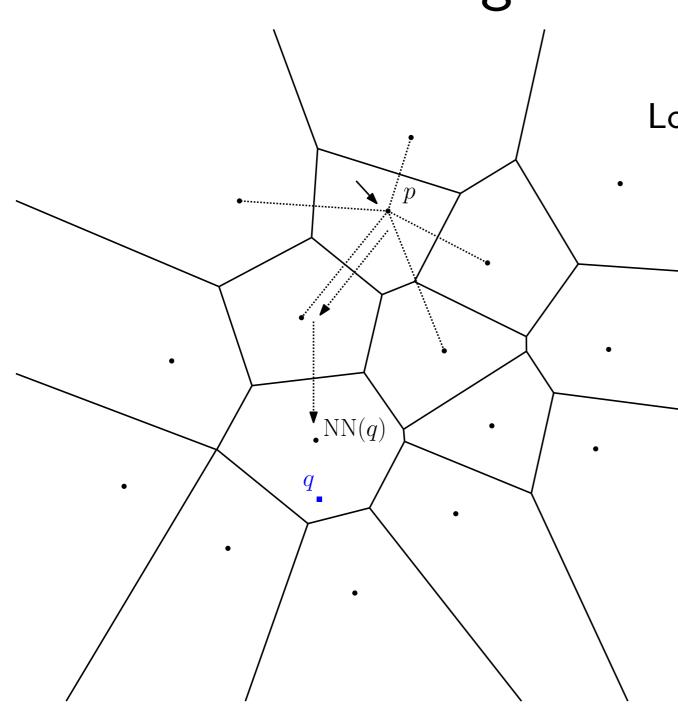


Localizing by **hierarchy**:

Voronoi subdivision [Kirk.'83, Meiser'93]: (2D) O(n) space, $O(\log n)$ time (dD) $\Theta(n^d)$ space, $O(d^5 \log n)$ time

Delaunay tree [Mulmuley'91]: (2D) $O(n \log n)$ space, $O(\log n)$ time

Delaunay tree + walk [Devillers'02]: (2D) $O(n \log n)$ space, $O(\log n)$ time (dD) $O(n^{\lceil \frac{d}{2} \rceil})$ space, $O(n^{\lceil \frac{d-2}{2} \rceil})$ time



For small dimensions (2 or 3) only!

Localizing by hierarchy:

Voronoi subdivision [Kirk.'83, Meiser'93]: (2D) O(n) space, $O(\log n)$ time (dD) $\Theta(n^d)$ space, $O(d^5 \log n)$ time

Delaunay tree [Mulmuley'91]: (2D) $O(n \log n)$ space, $O(\log n)$ time

Delaunay tree + walk [Devillers'02]: (2D) $O(n \log n)$ space, $O(\log n)$ time (dD) $O(n^{\lceil \frac{d}{2} \rceil})$ space, $O(n^{\lceil \frac{d-2}{2} \rceil})$ time

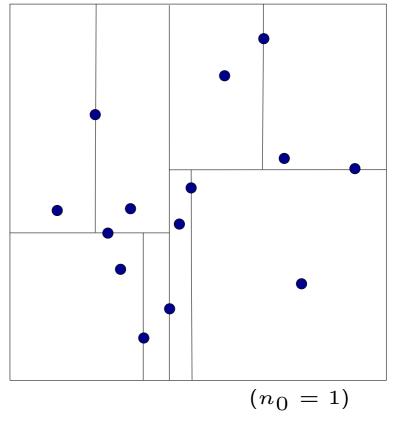
Definition

- a binary tree
- each internal node implements a spatial partition induced by a hyperplane H, splitting the point cloud into two equal subsets

 \blacktriangleright right subtree: all points lying on one side of H

- ► left subtree: remaining points
- ullet subdivision stops whenever fewer than n_0 remain

 \rightsquigarrow size: O(dn)



Definition

- a binary tree
- each internal node implements a spatial partition induced by a hyperplane H, splitting the point cloud into two equal subsets

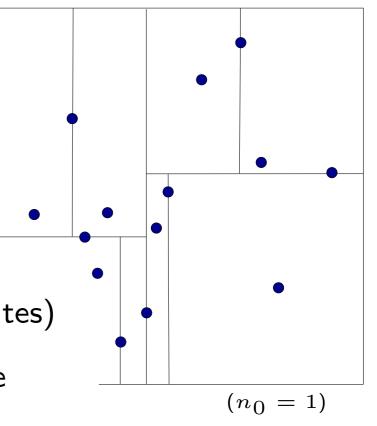
 \blacktriangleright right subtree: all points lying on one side of H

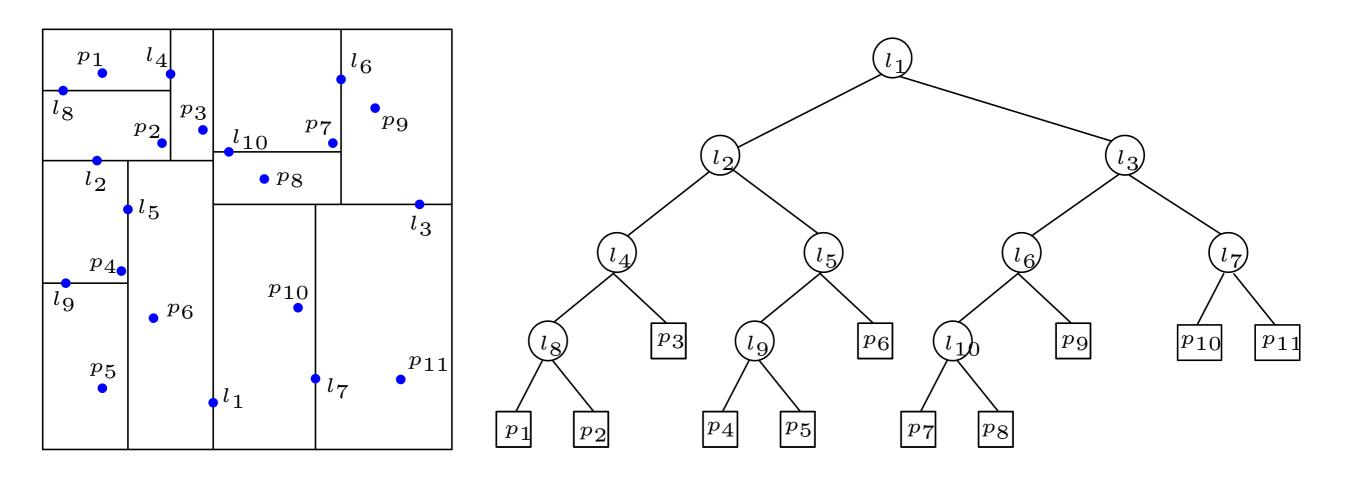
- ► left subtree: remaining points
- ullet subdivision stops whenever fewer than n_0 remain

 \rightsquigarrow size: O(dn)

kd-tree specifics:

- H orthogonal to coordinate axis (cycle through coordinates)
- ${\cal H}$ goes through the median in the considered coordinate





 l_i : data at internal node

(note: left-right labels are arbitrary)

 p_i : data at leaf node

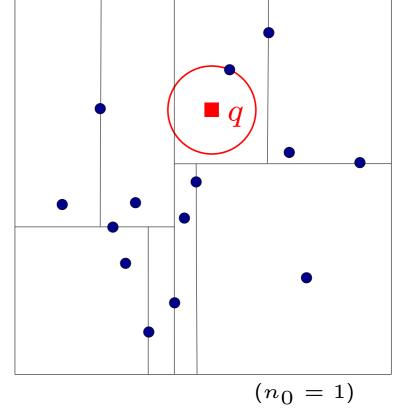
 $n_0 = 1$

Strategy 1: defeatist search

```
d_{\min} := \infty (dist. to pts viewed so far)
search (node): (node = root initially)
if node = leaf:
d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}
```

else:

$$d_{\min} := \min\{d_{\min}, d(q, node.point)\}$$



Strategy 1: defeatist search

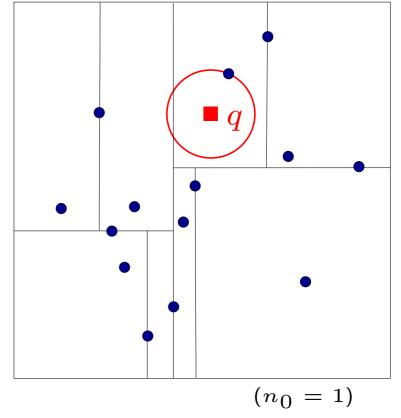
 $d_{\min} := \infty$ (dist. to pts viewed so far) search (node): (node = root initially) if node = leaf: $d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}$

else:

$$d_{\min} := \min\{d_{\min}, d(q, node.point)\}$$

if q on "left" side of node.H
 recurse on node.left
else (q on "right" side of node.H)
 recurse on node.right

Query time: $O(d(n_0 + \log \frac{n}{n_0}))$



Strategy 1: defeatist search

 $d_{\min} := \infty$ (dist. to pts viewed so far) search (*node*): (*node* = root initially) if node = leaf: $d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}$

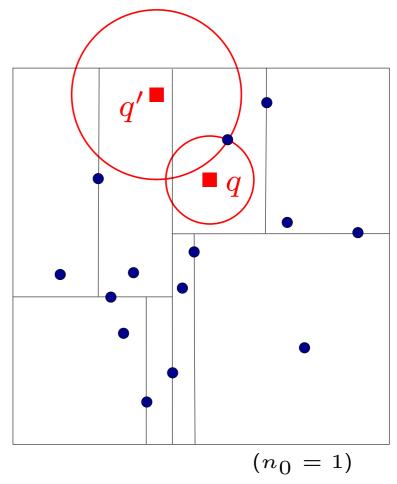
else:

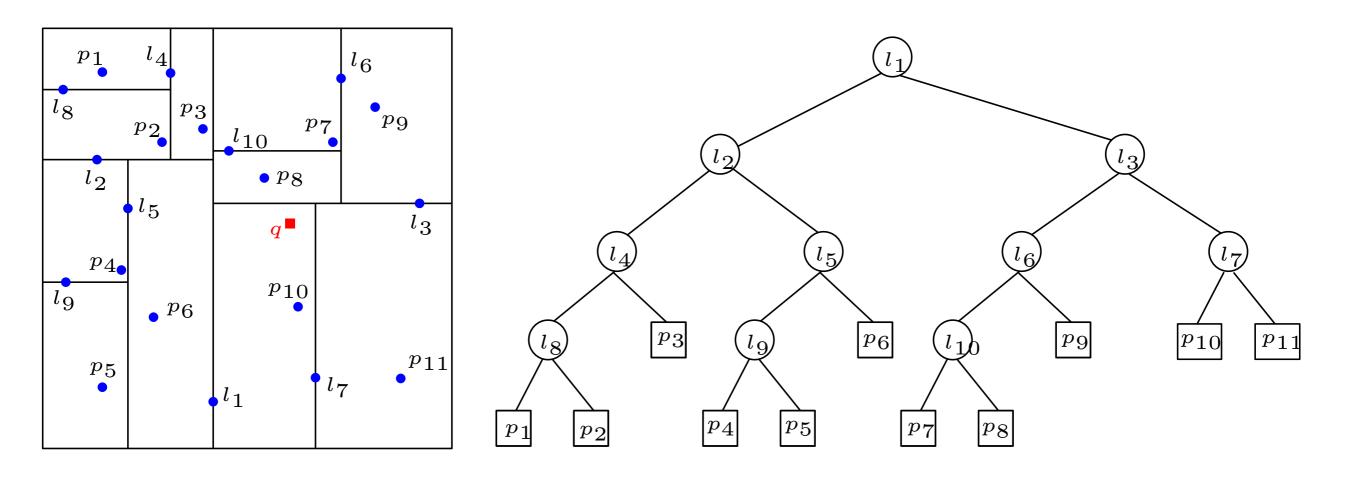
 $d_{\min} := \min\{d_{\min}, d(q, node.point)\}$

if q on "left" side of node.Hrecurse on *node.left* else (q on "right" side of node.H)recurse on *node.right*

Query time: $O(d(n_0 + \log \frac{n}{n_0}))$

May fail!





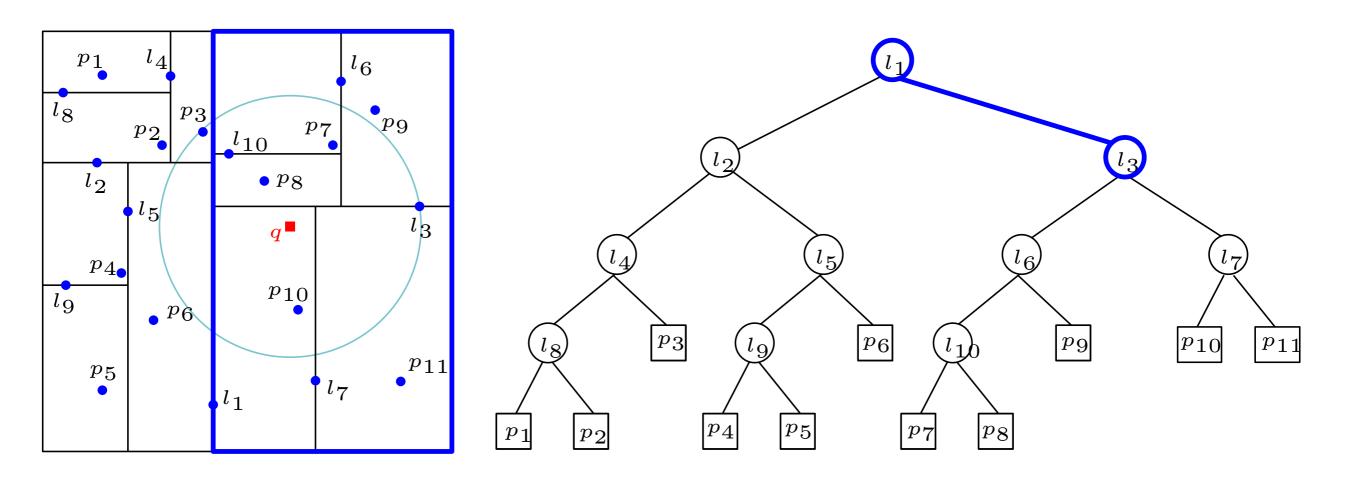
 l_i : data at internal node

(note: left-right labels are arbitrary)



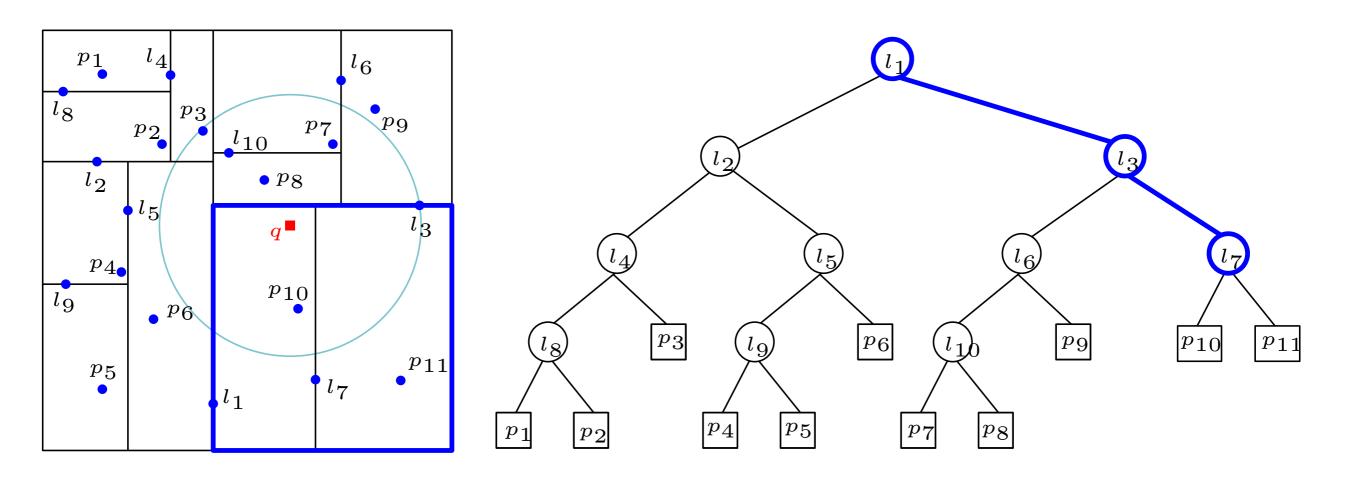
 l_i : data at internal node

(note: left-right labels are arbitrary)



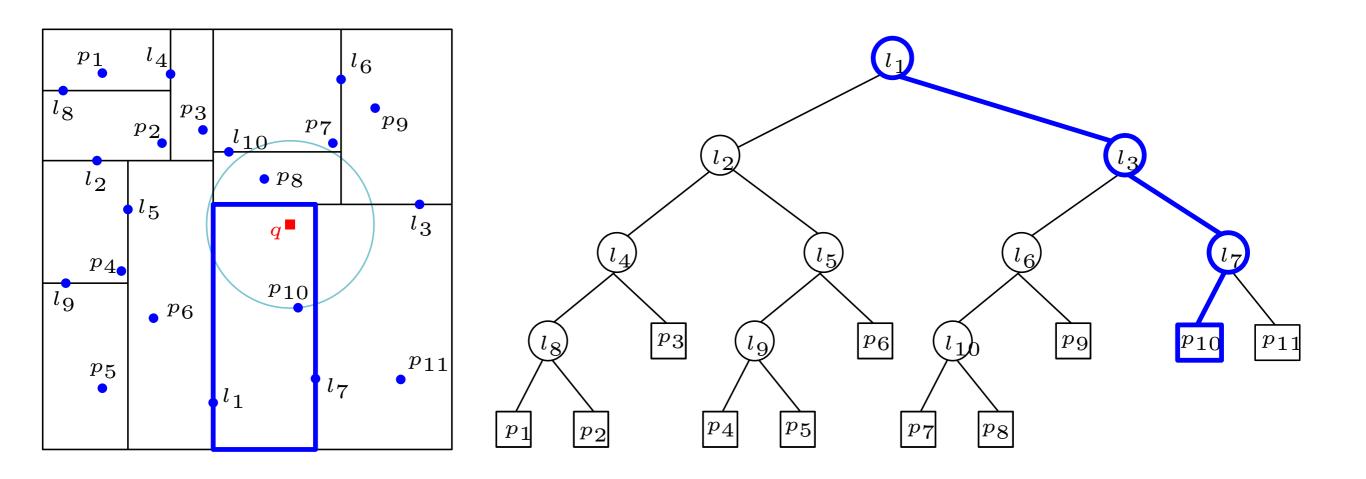
 l_i : data at internal node

(note: left-right labels are arbitrary)



 l_i : data at internal node

(note: left-right labels are arbitrary)



 l_i : data at internal node

(note: left-right labels are arbitrary)

Strategy 2: backtracking search

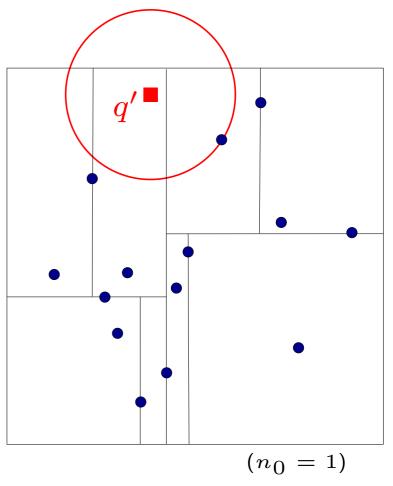
 $d_{\min} := \infty$ (dist. to pts viewed so far) search (node): (node = root initially) if node = leaf: $d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}$

else:

$$d_{\min} := \min\{d_{\min}, d(q, node.point)\}$$

if $B(q, d_{min})$ intersects "left" side of node.Hrecurse on node.left

if $B(q, d_{\min})$ intersects "right" side of node.Hrecurse on node.right



Strategy 2: backtracking search

 $d_{\min} := \infty$ (dist. to pts viewed so far) search (node): (node = root initially) if node = leaf:

 $d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}$

else:

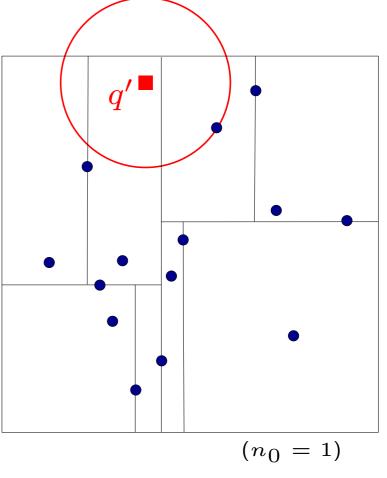
 $d_{\min} := \min\{d_{\min}, d(q, node.point)\}$

if $B(q, d_{min})$ intersects "left" side of node.H recurse on node.left

if $B(q, d_{\min})$ intersects "right" side of *node*.*H* recurse on *node*.*right*

Always succeeds

$$\begin{split} \mathrm{d_{\min}} \geq \mathrm{d}(q,\mathrm{NN}(q)) \Rightarrow B(q,\mathrm{d_{\min}}) \\ \text{intersects all cells containing } \mathrm{NN}(q) \\ \text{in subdivision throughout search} \end{split}$$



Strategy 2: backtracking search $d_{\min} := \infty$ (dist. to pts viewed so far) search (*node*): (*node* = root initially) if node = leaf: $d_{\min} := \min\{d_{\min}, \min_{p \in node.batch} d(q, p)\}$

else:

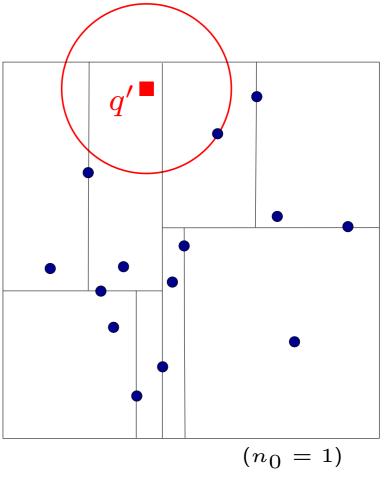
 $d_{\min} := \min\{d_{\min}, d(q, node.point)\}$

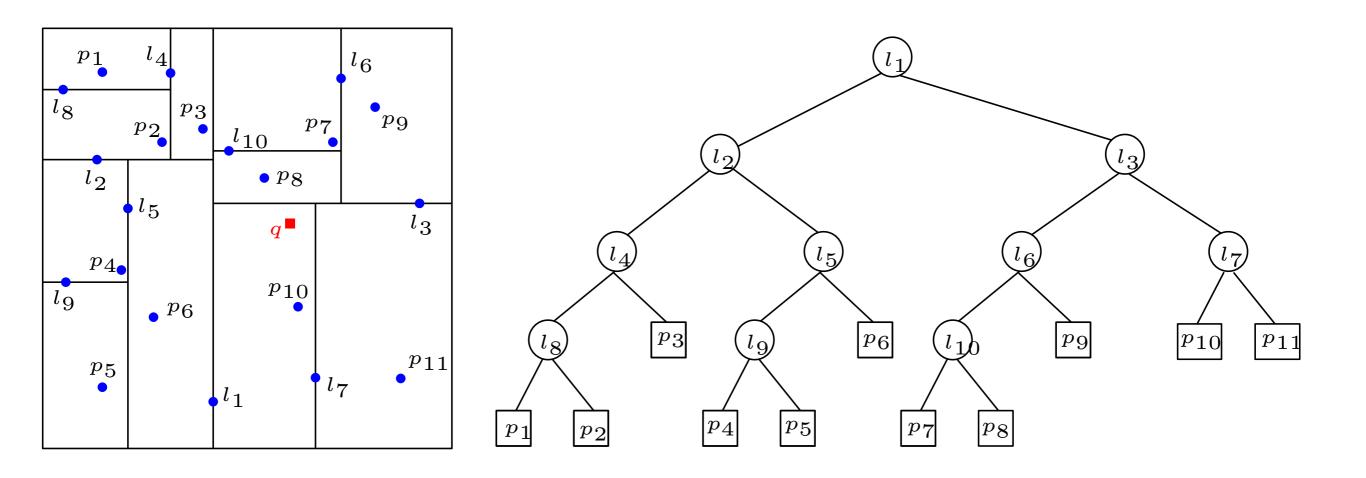
if $B(q, d_{min})$ intersects "left" side of node.H recurse on *node.left*

if $B(q, d_{\min})$ intersects "right" side of node.Hrecurse on *node.right*

Always succeeds

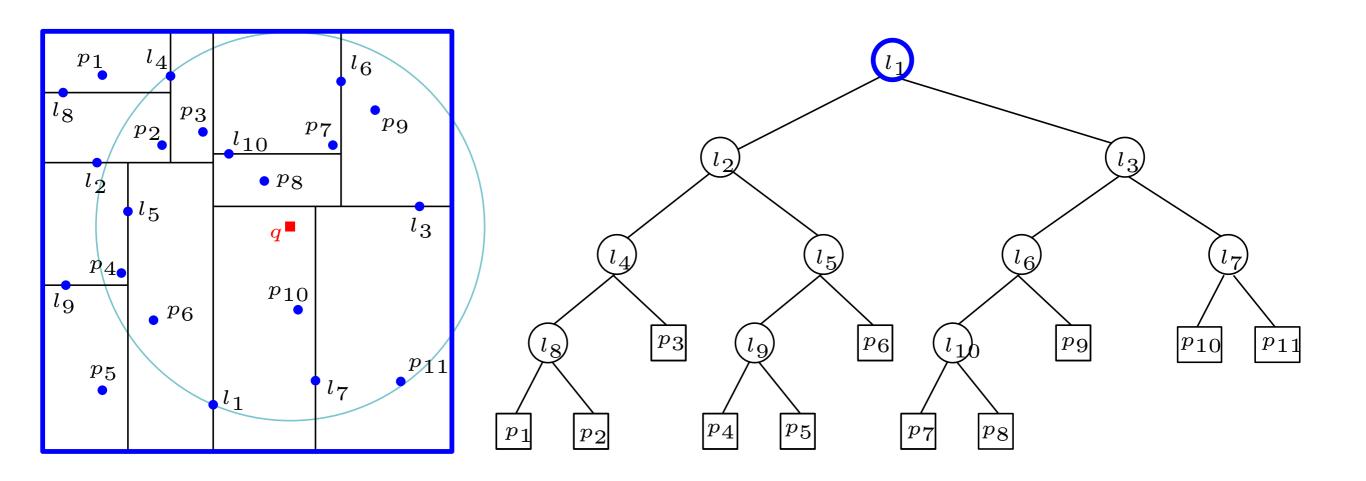
Query time may be up to linear (all cells visited)





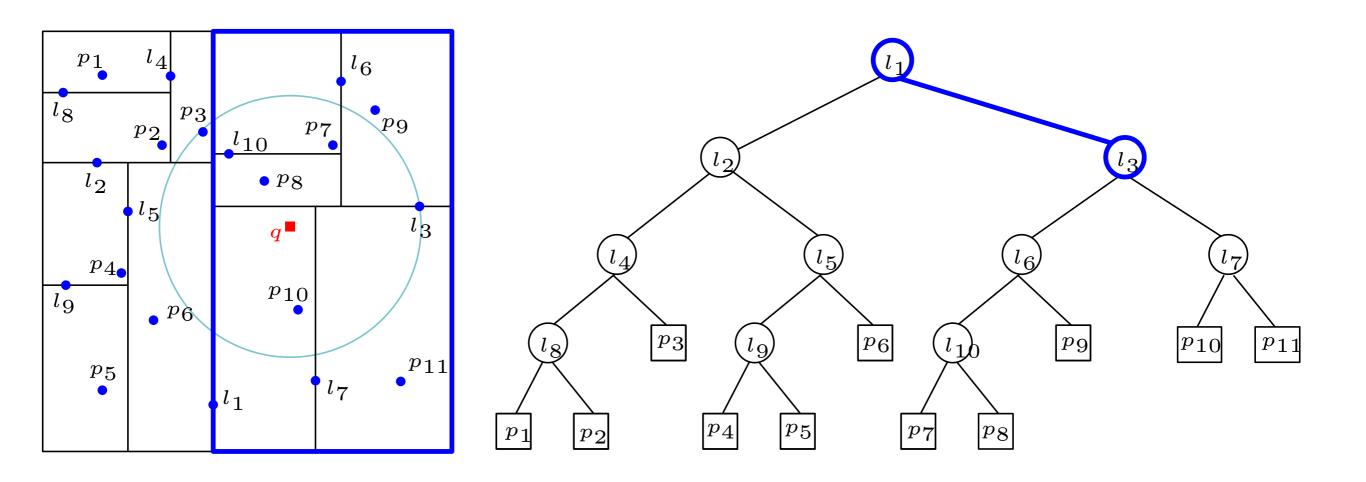
 l_i : data at internal node

(note: left-right labels are arbitrary)



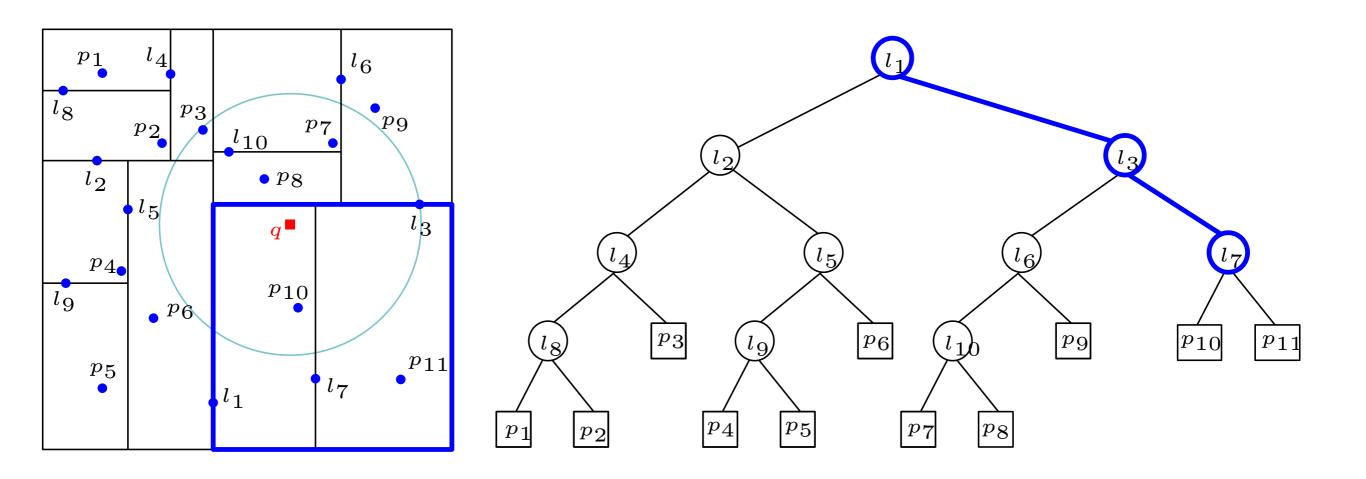
 l_i : data at internal node

(note: left-right labels are arbitrary)



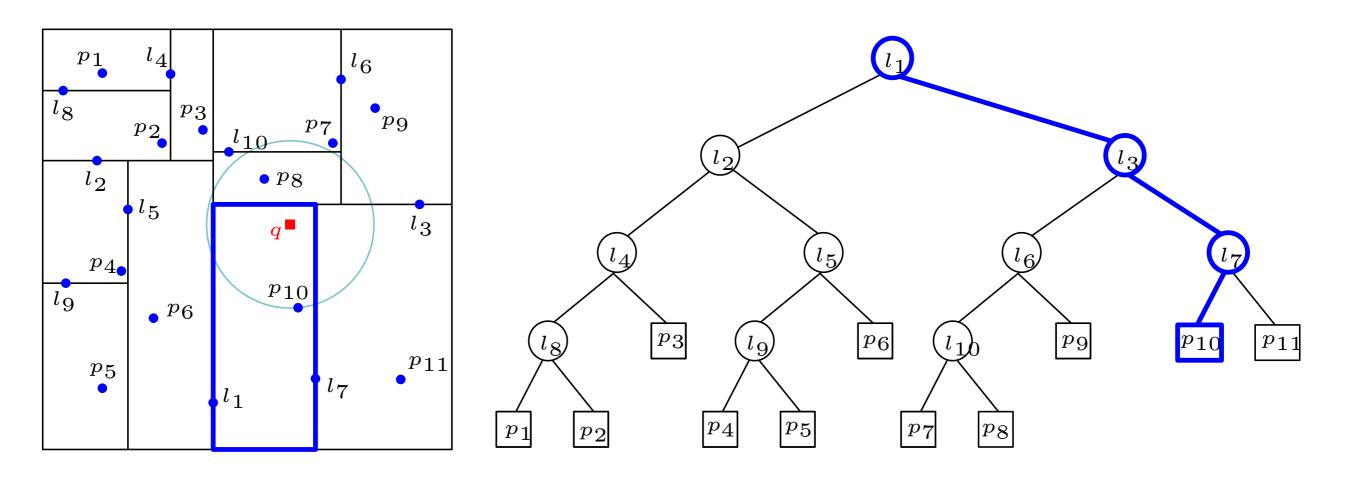
 l_i : data at internal node

(note: left-right labels are arbitrary)



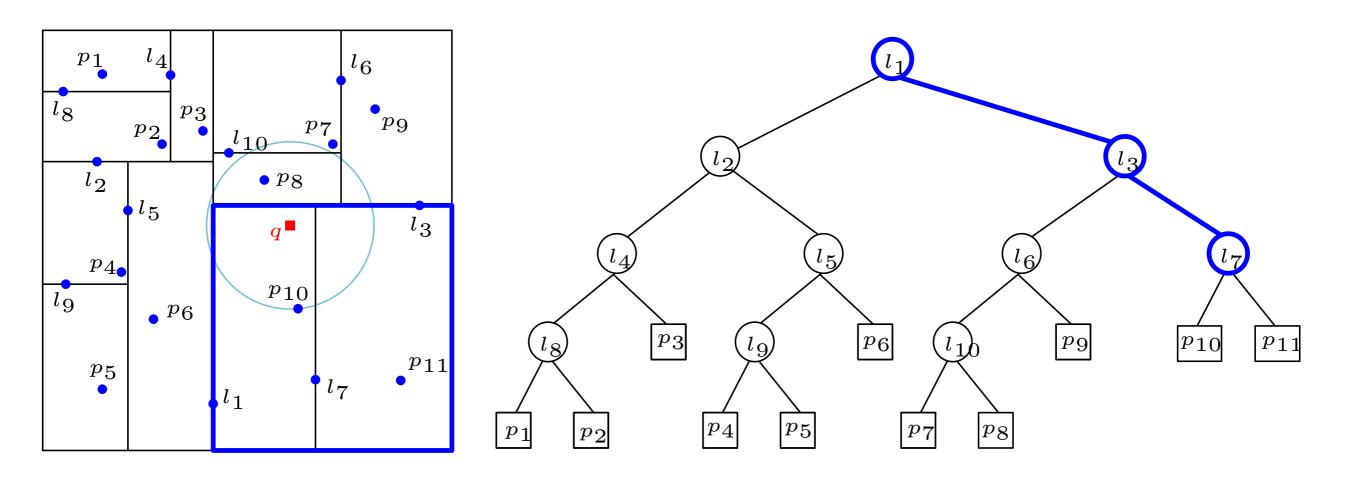
 l_i : data at internal node

(note: left-right labels are arbitrary)



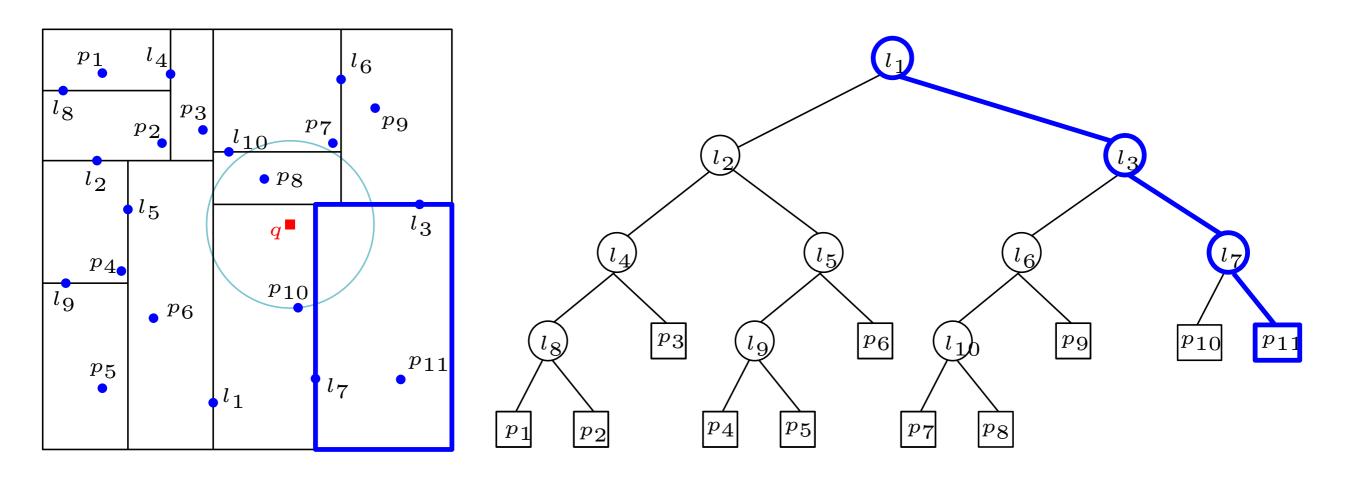
 l_i : data at internal node

(note: left-right labels are arbitrary)



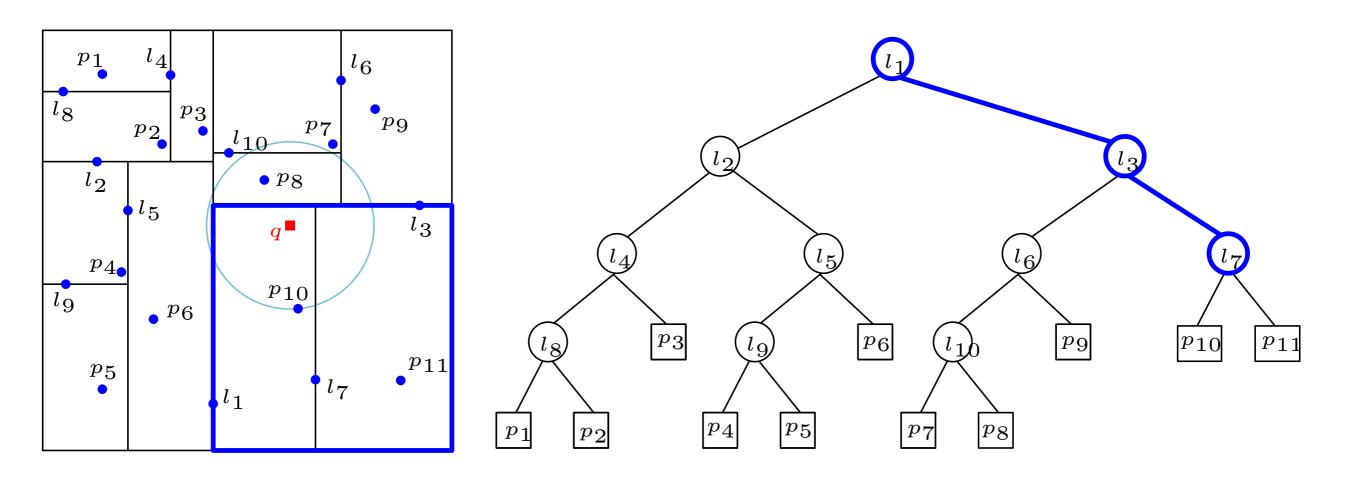
 l_i : data at internal node

(note: left-right labels are arbitrary)



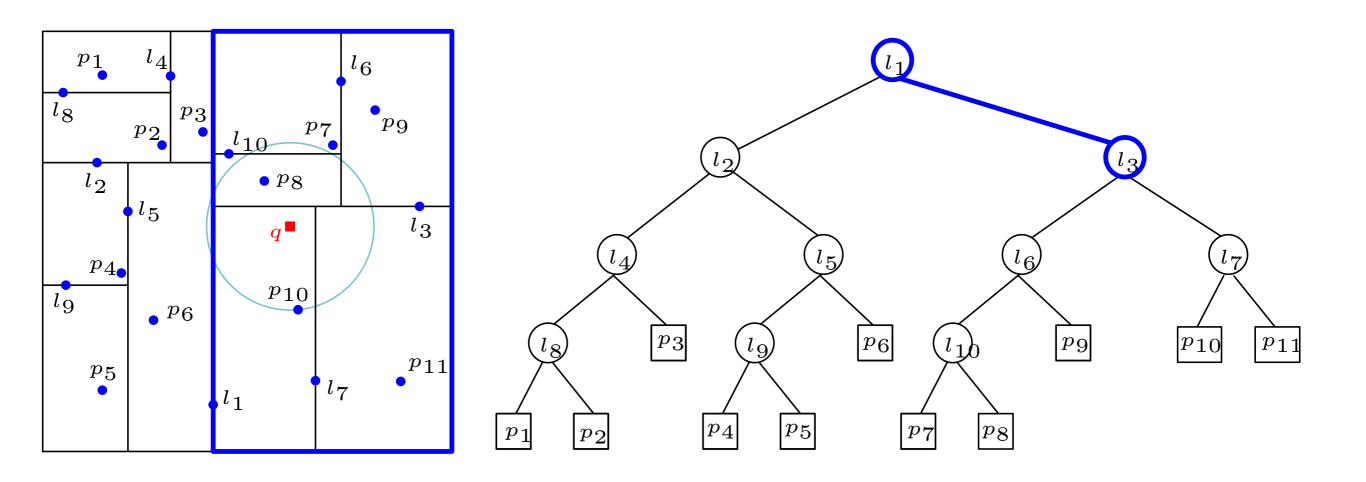
 l_i : data at internal node

(note: left-right labels are arbitrary)



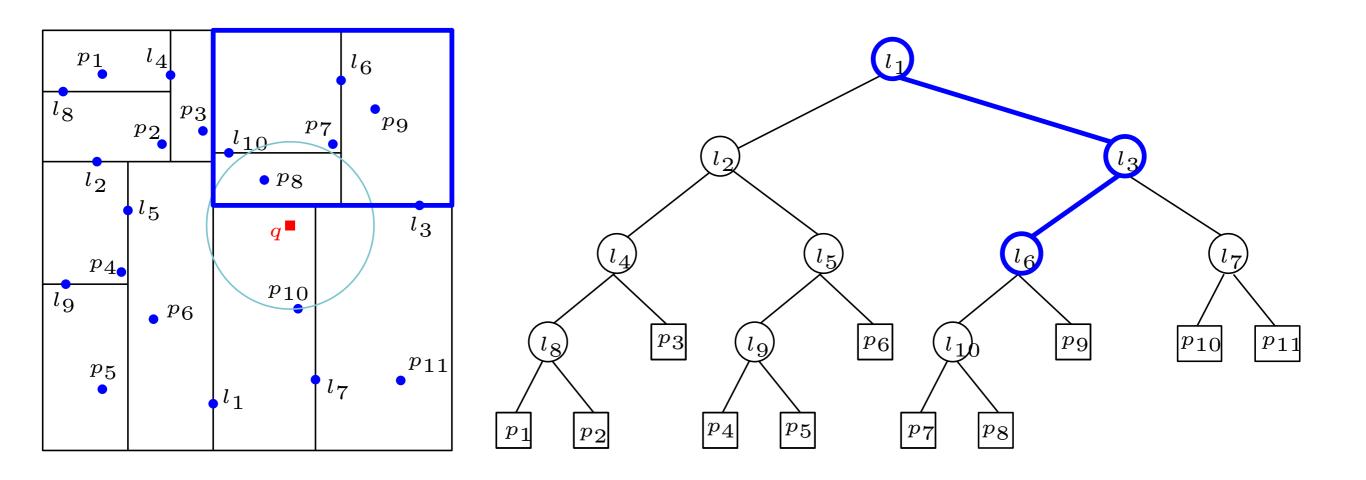
 l_i : data at internal node

(note: left-right labels are arbitrary)



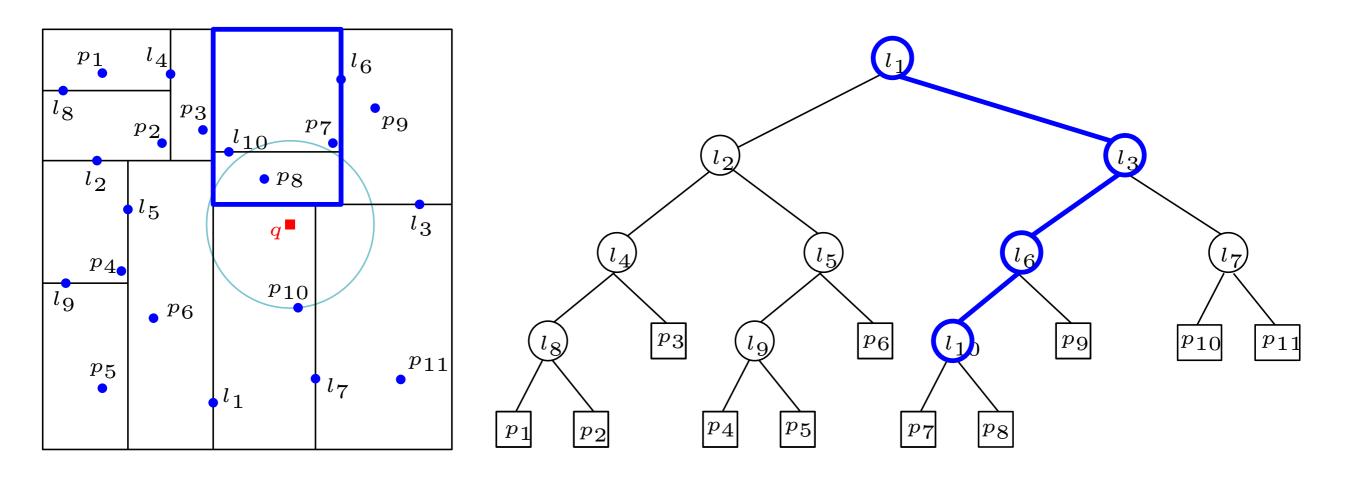
 l_i : data at internal node

(note: left-right labels are arbitrary)



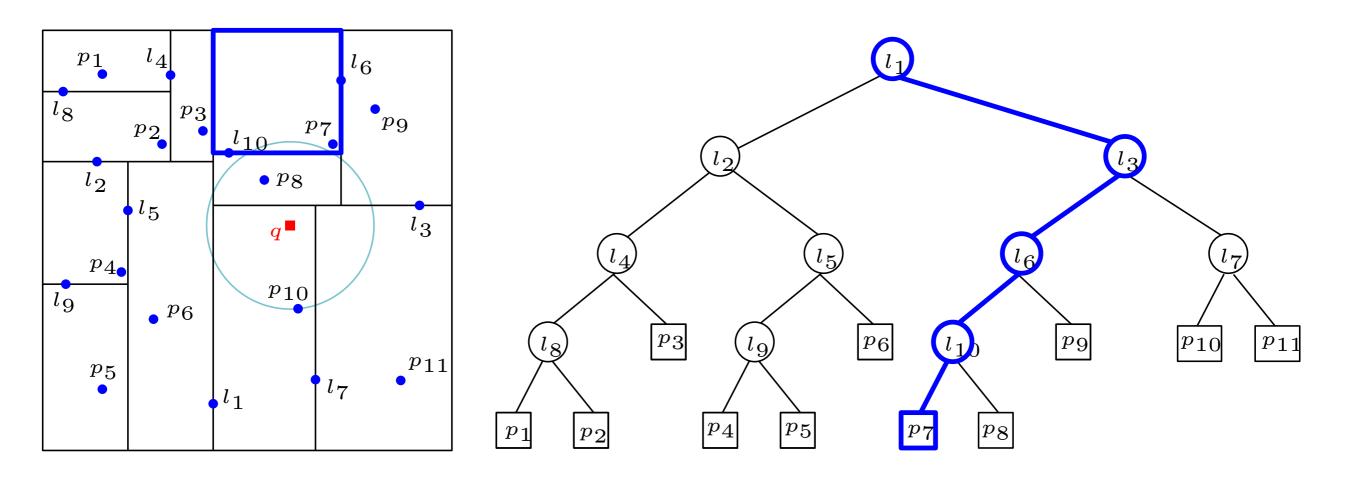
 l_i : data at internal node

(note: left-right labels are arbitrary)



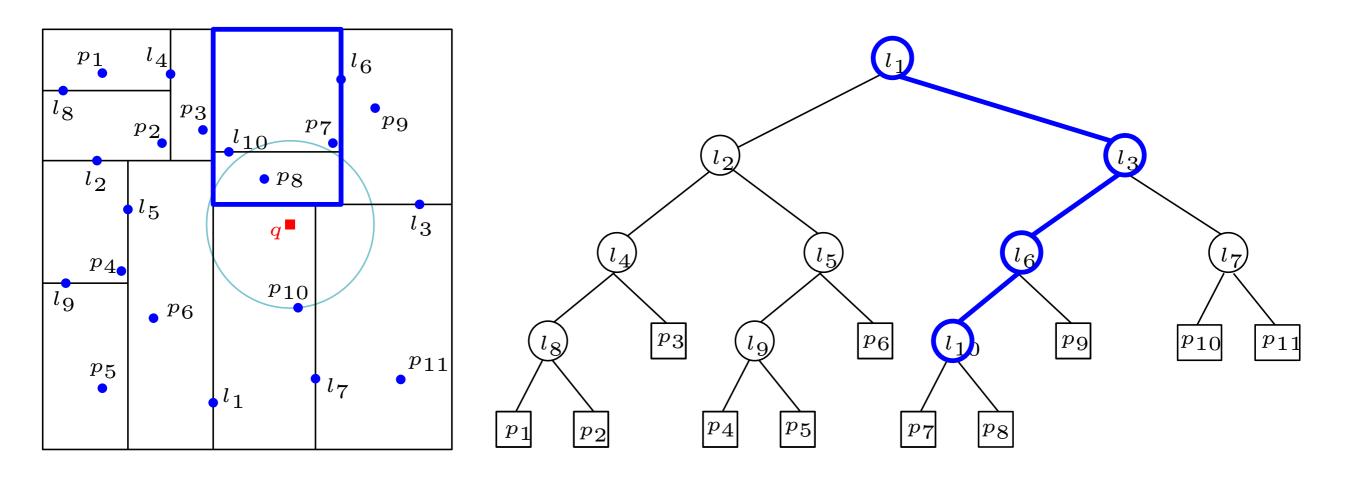
 l_i : data at internal node

(note: left-right labels are arbitrary)



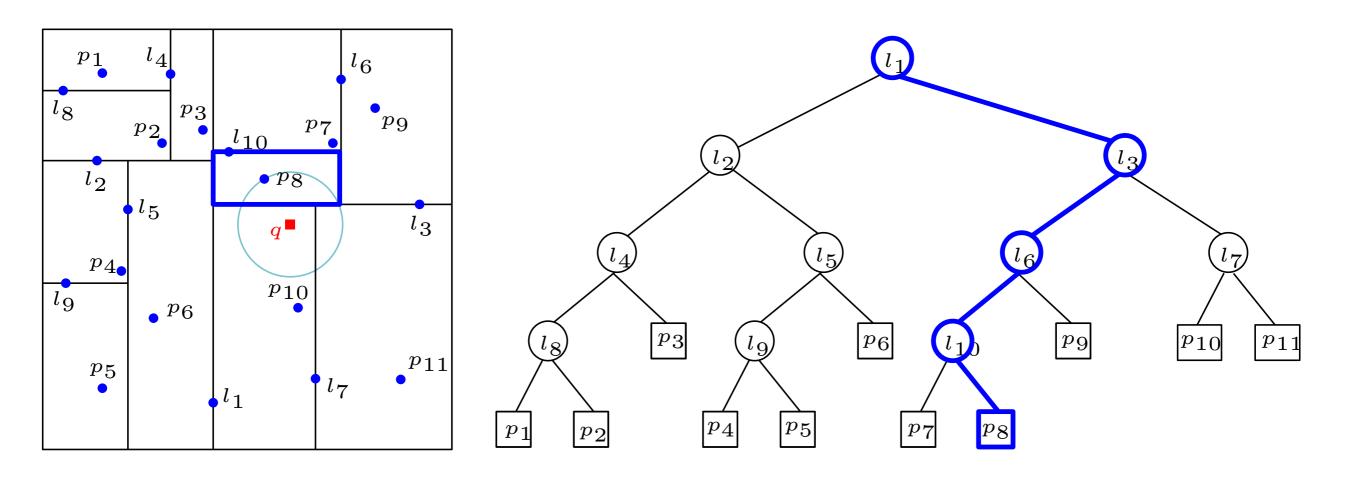
 l_i : data at internal node

(note: left-right labels are arbitrary)



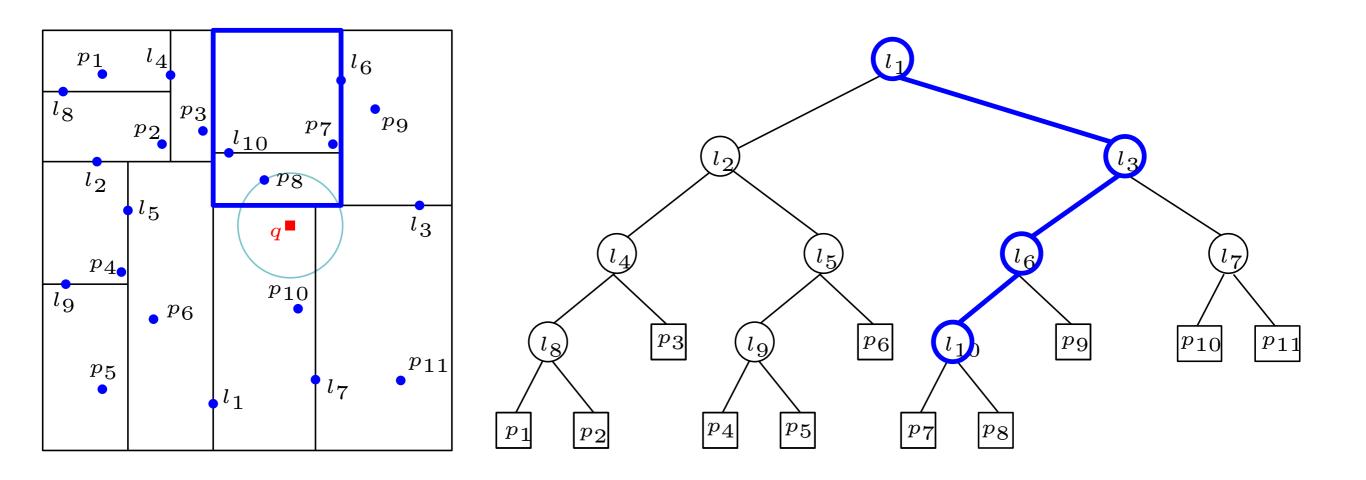
 l_i : data at internal node

(note: left-right labels are arbitrary)



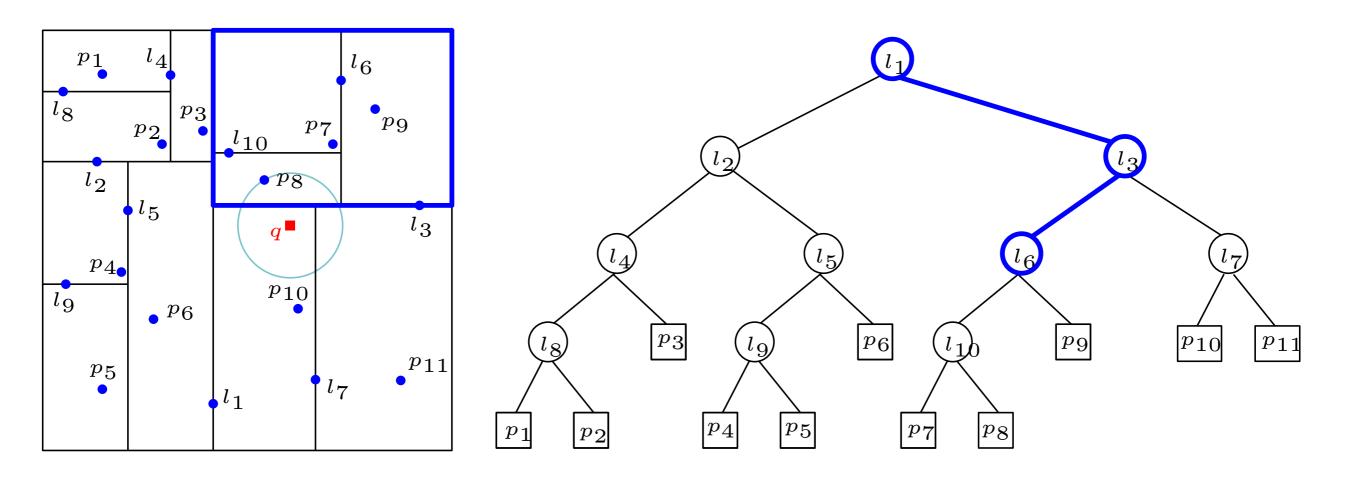
 l_i : data at internal node

(note: left-right labels are arbitrary)



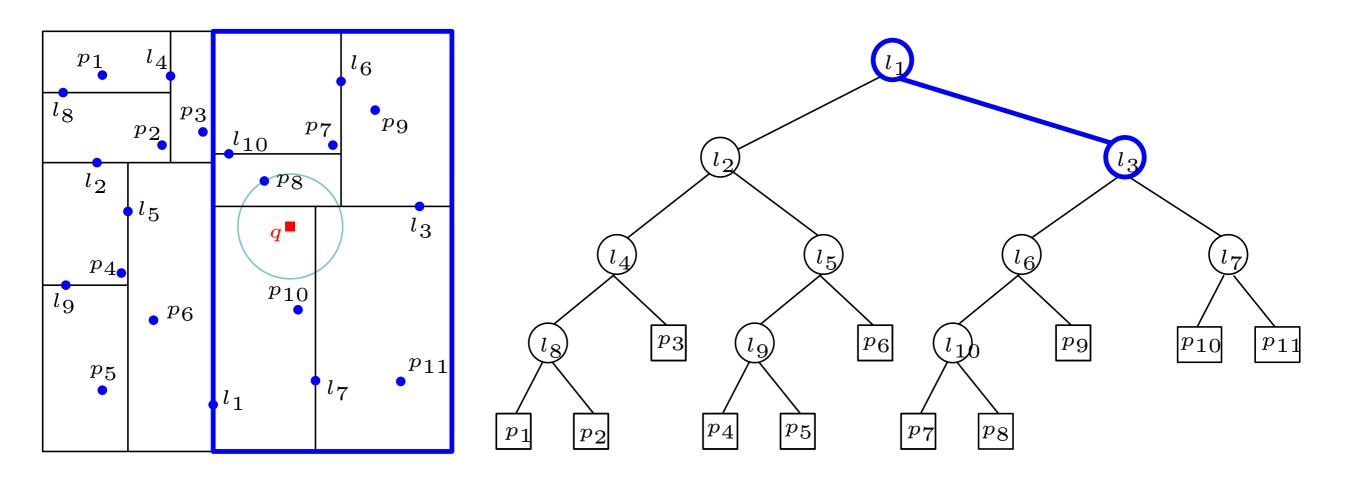
 l_i : data at internal node

(note: left-right labels are arbitrary)



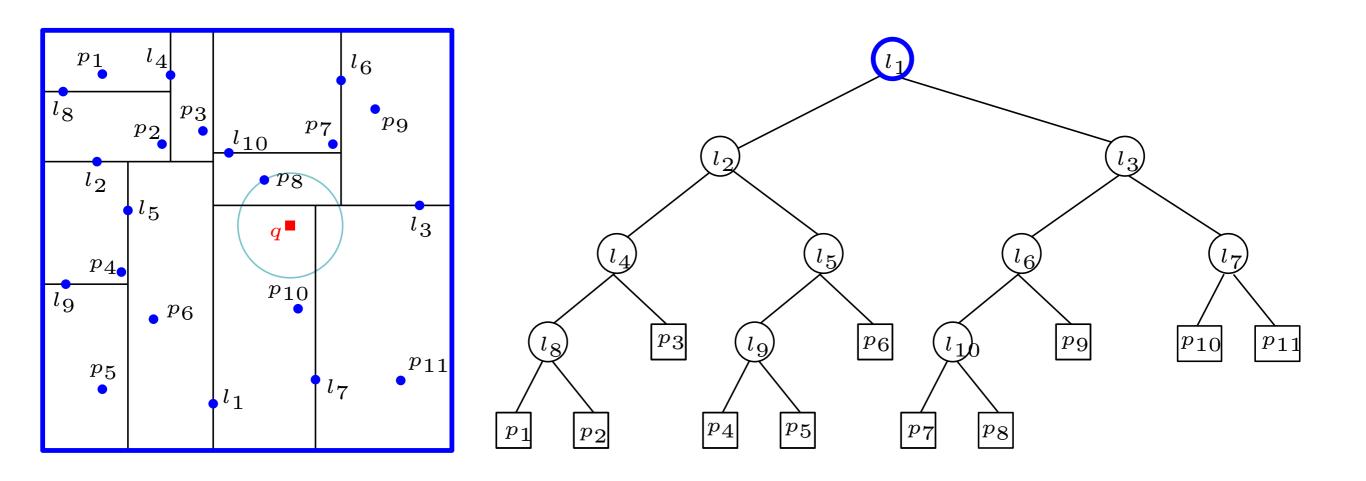
 l_i : data at internal node

(note: left-right labels are arbitrary)



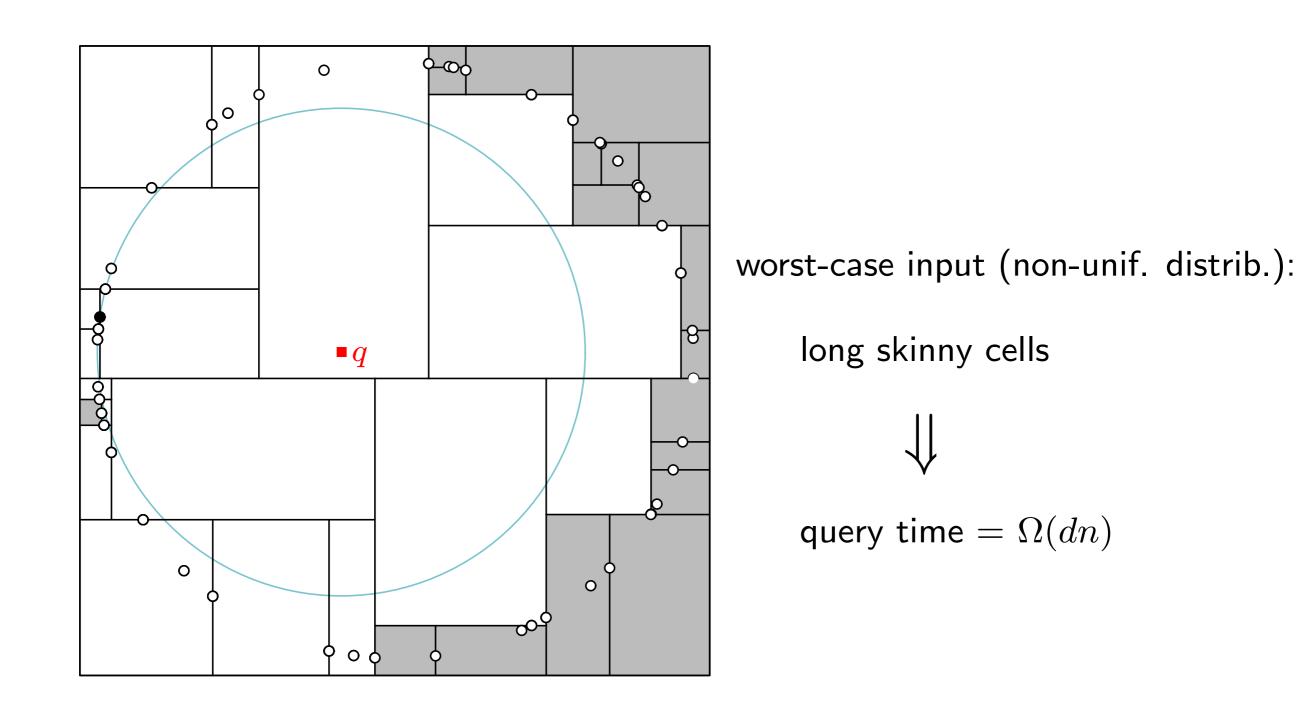
 l_i : data at internal node

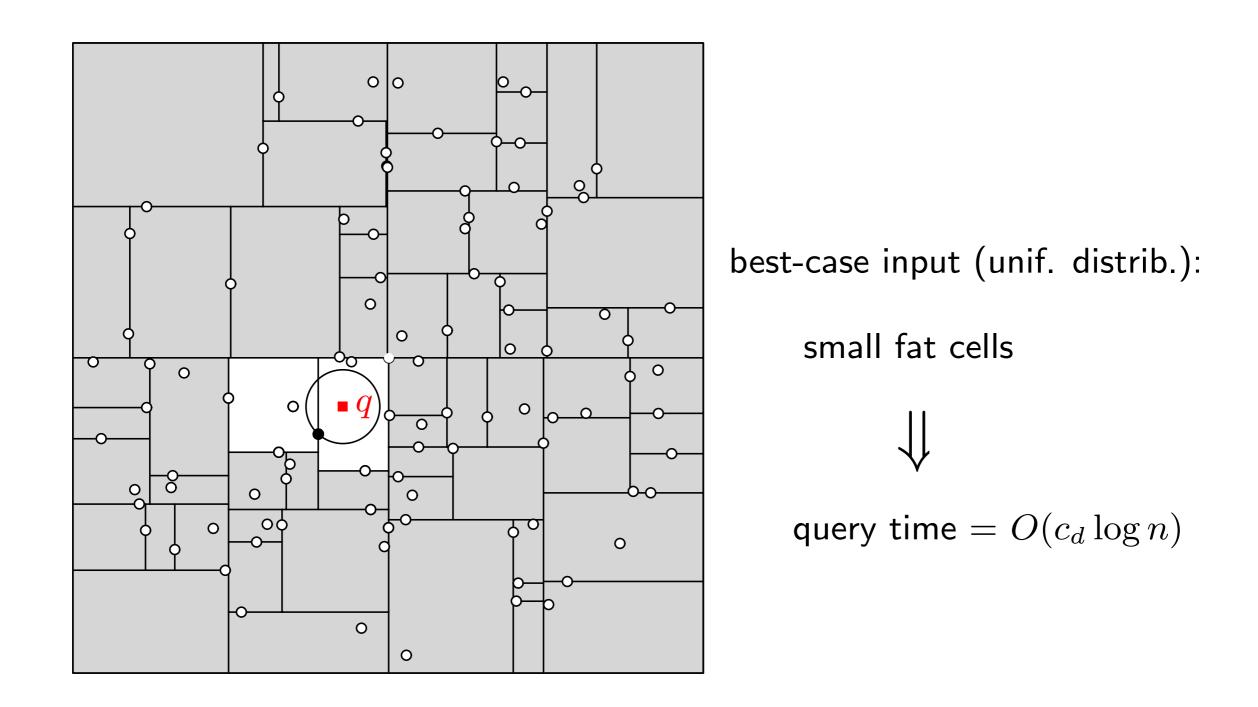
(note: left-right labels are arbitrary)

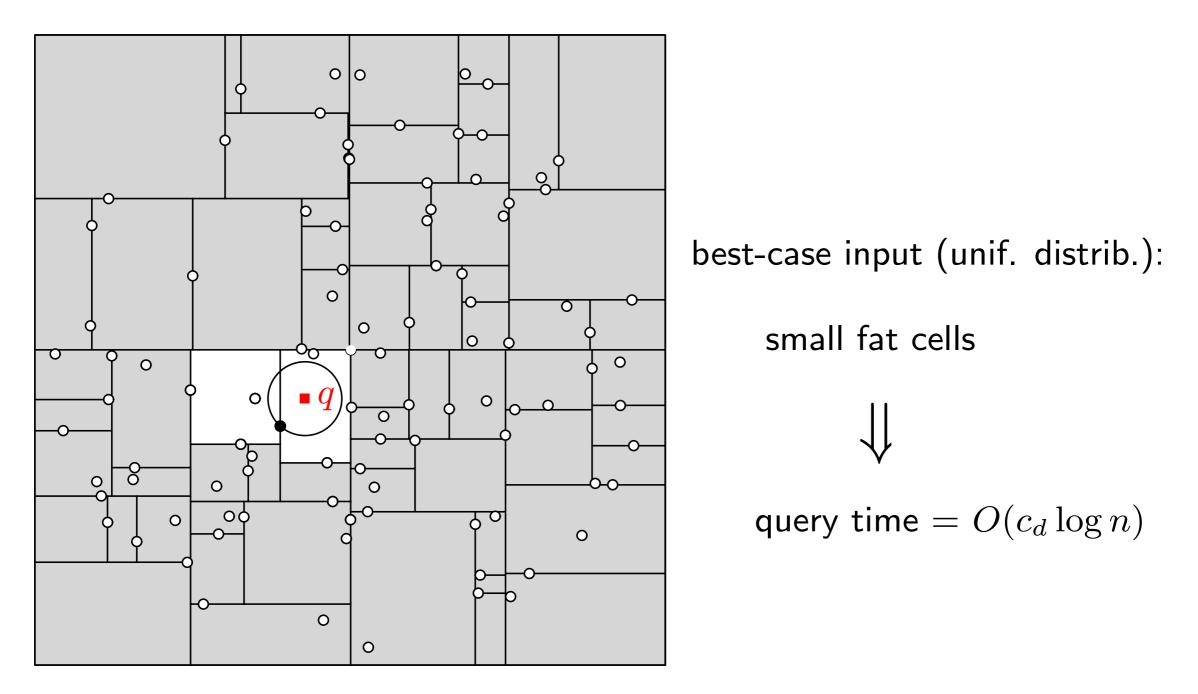


 l_i : data at internal node

(note: left-right labels are arbitrary)





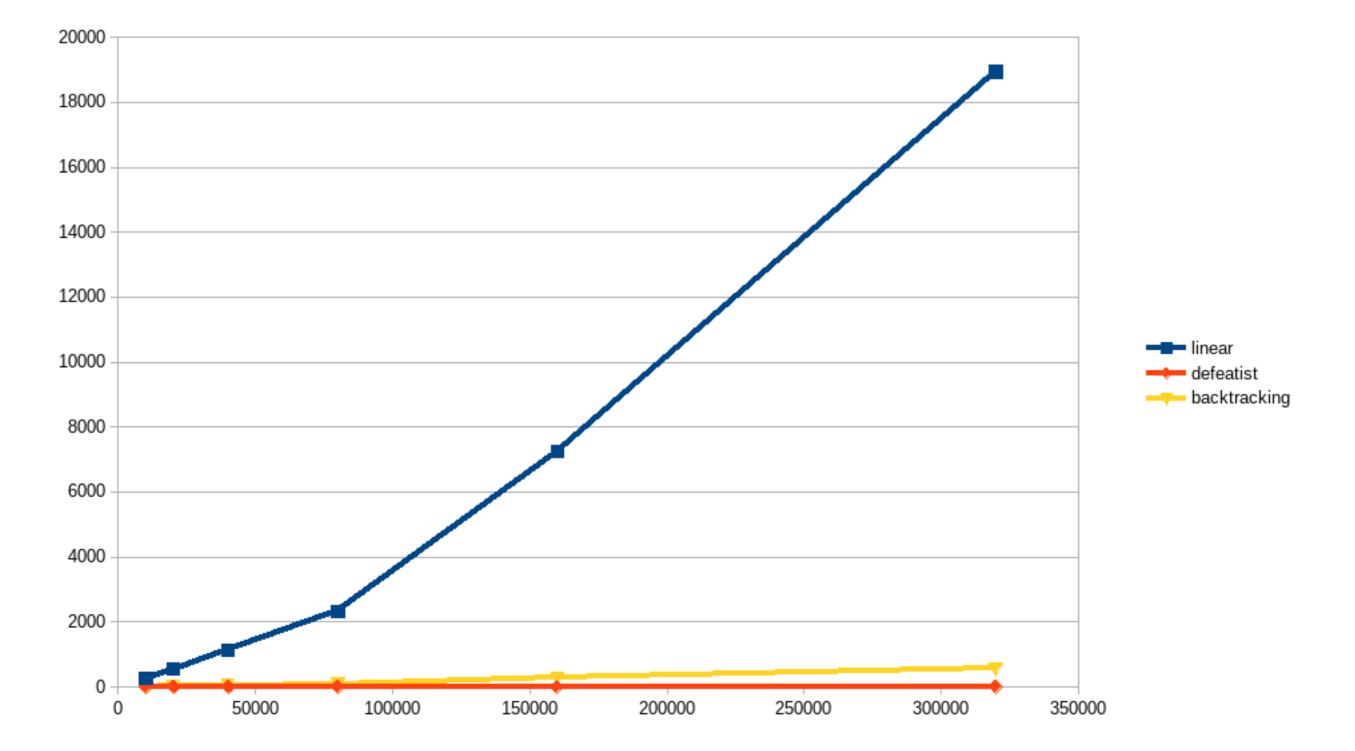


Randomness should help!

(many variants: priority search, early backtracking, random cutting hyperplanes, etc.) 12

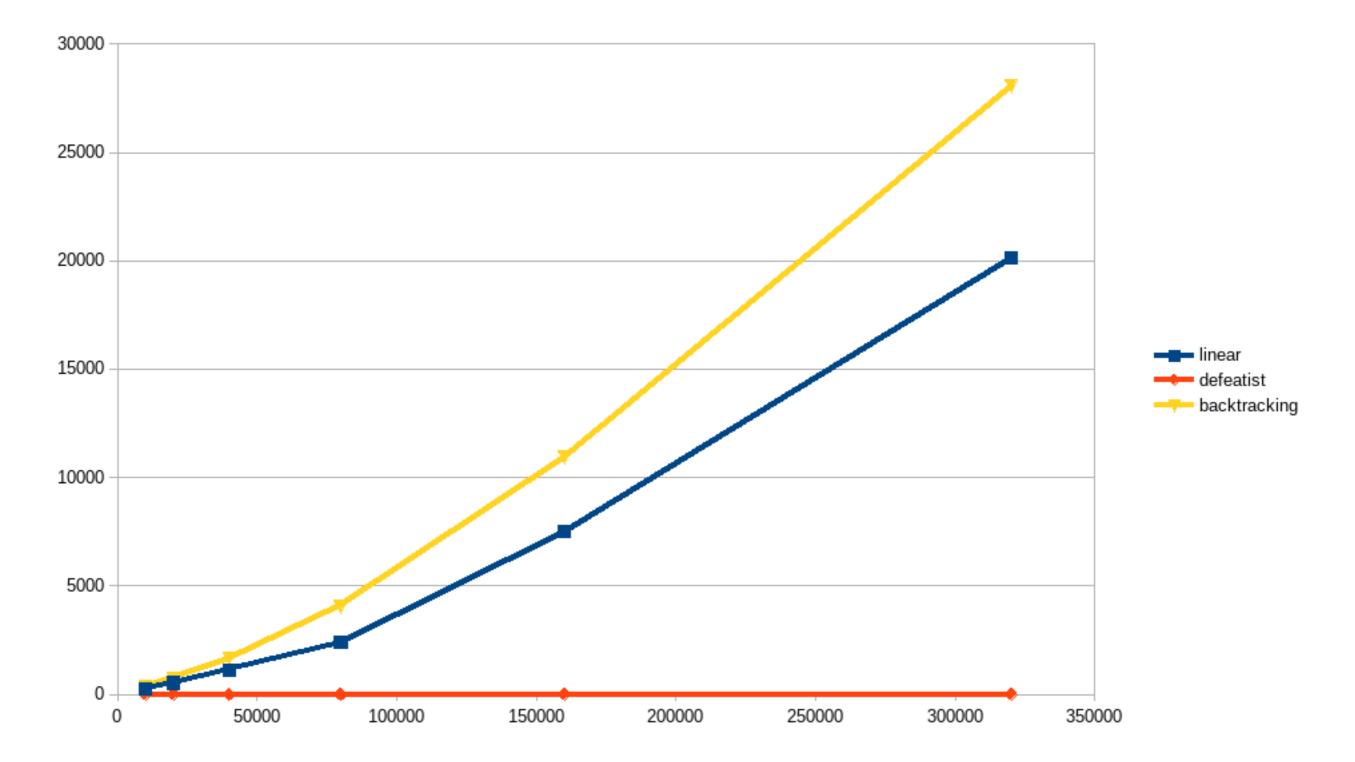
Benchmarks

avg. query time (μs) vs. # data points: (uniform measure in unit square in 2d)

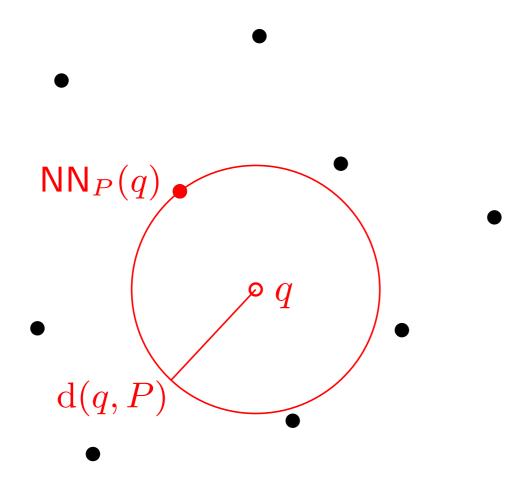


Benchmarks

avg. query time (μs) vs. # data points: (uniform measure on unit circle in 2d)



High dimensions



pre-processing input: $P \subset \mathbb{R}^d$

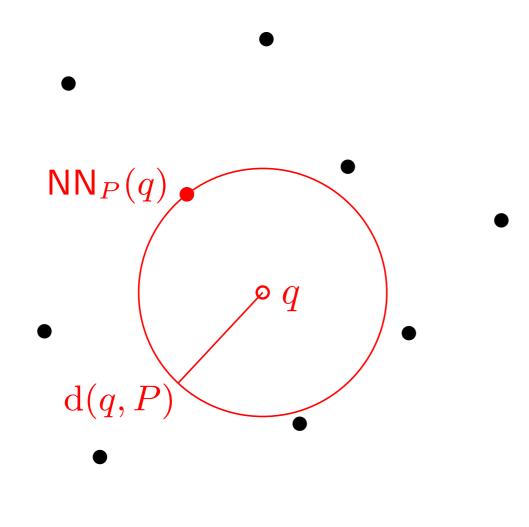
query input: q

goal: find $p \in NN_P(q)$

Curse of Dimensionality:

Every data structure for NN-search has either exponential size or exponential query time (in d) in the worst case.

High dimensions



pre-processing input: $P \subset \mathbb{R}^d$

query input: q

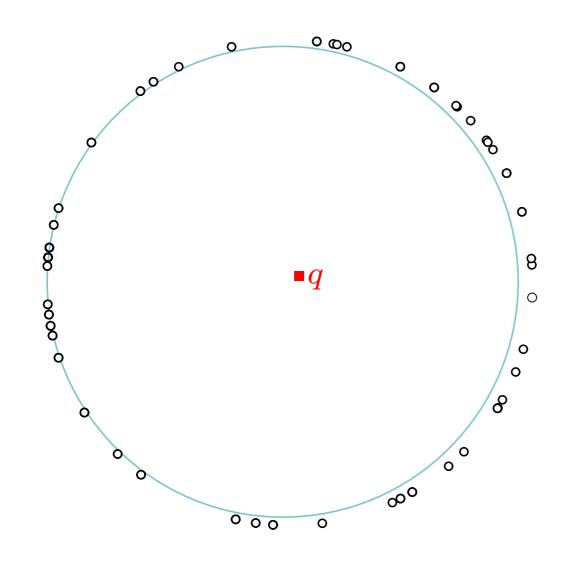
goal: find $p \in NN_P(q)$

Curse of Dimensionality:

Every data structure for NN-search has either exponential size or exponential query time (in d) in the worst case.

 \rightarrow holds both in theory and in practice [Weber et al. '98] [Arya et al. '98]

High dimensions



pre-processing input: $P \subset \mathbb{R}^d$

query input: q

goal: find $p \in NN_P(q)$

Curse of Dimensionality:

Every data structure for NN-search has either exponential size or exponential query time (in d) in the worst case.

 \rightarrow holds both in theory and in practice [Weber et al. '98] [Arya et al. '98]

 \rightarrow underlying phenomenon: concentration of measure

(distances concentrate around mean) [Demartinez '94]

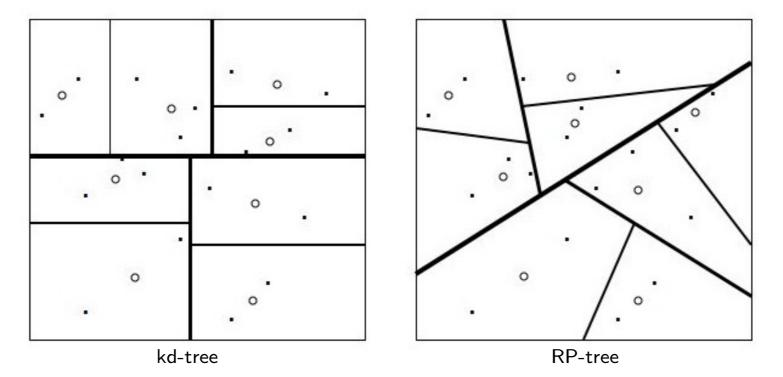
Random Projection/Partition Trees

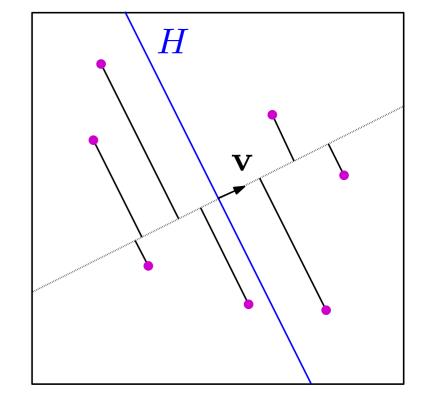
Random Projection/Partition tree:

at each internal node (corresponding to a cell C):

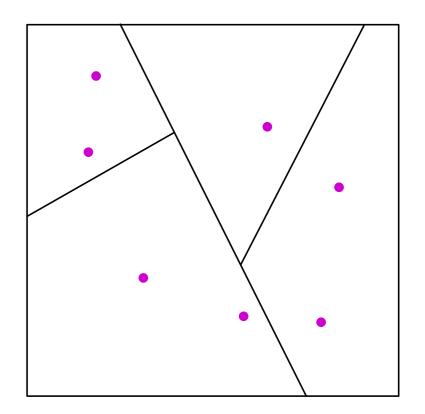
- choose $\mathbf{v} \sim \operatorname{unif}(\mathbb{S}^{d-1})$ and $\beta \sim \operatorname{unif}([\frac{1}{4}, \frac{3}{4}])$
- let $H = \mathbf{v}^{\perp} + \operatorname{median}_{\beta}\{(P \cap C) \cdot \mathbf{v}\}\mathbf{v}$
- partition $P \cap C$ by H (as in kd-tree)

at each leaf node, store at most n_0 points





Prop: [Dasgupta, Freund'08] There is a constant c > 0 such that, for any cell Cin a RP-tree built on $P \in \mathbb{R}^d$, with probability at least 1/2 (over the choice of \mathbf{v}, β) all the cells lying at least $c k \log k$ levels below C in the tree have at most half the radius of C, where $k = \dim_2(P \cap C)$.



doubling dimension of $S \subseteq \mathbb{R}^d$: smallest $k \in \mathbb{N}$ such that, for every Euclidean ball $B, B \cap S$ can be covered by 2^k Euclidean balls of half radius.

radius of $S \subseteq \mathbb{R}^d$: smallest r > 0 such that $\exists x \in C$ with $B(x, r) \supseteq S$.

Thm: [Dasgupta, Sinha'13]

Suppose $p_1, \dots, p_n \stackrel{\text{iid}}{\sim} \mu$ continuous probability measure in \mathbb{R}^d with doubling dimension $k \ge 2$. Then $\exists c_0 > 0$ s.t. for any $q \in \mathbb{R}^d$ and $\delta < 1/e$, with proba. $\ge 1 - 3\delta$ over the choice of the p_i 's:

 $\mathbb{P}_{\mathbf{v},\beta}$ [defeatist search does not return $NN_P(q)$] $\leq c_0(k+\ln n_0) \left(\frac{8 \ln 1/\delta}{n_0}\right)^{1/k}$

doubling dimension of μ : smallest $k \in \mathbb{N}$ such that, for every $x \in \mathbb{R}^d$ and every r > 0: $\mu(B(x, 2r)) \leq 2^k \mu(B(x, r))$.

Thm: [Dasgupta, Sinha'13]

Suppose $p_1, \dots, p_n \stackrel{\text{iid}}{\sim} \mu$ continuous probability measure in \mathbb{R}^d with doubling dimension $k \ge 2$. Then $\exists c_0 > 0$ s.t. for any $q \in \mathbb{R}^d$ and $\delta < 1/e$, with proba. $\ge 1 - 3\delta$ over the choice of the p_i 's:

 $\mathbb{P}_{\mathbf{v},\beta}$ [defeatist search does not return $\mathrm{NN}_P(q)$] $\leq c_0(k+\ln n_0) \left(\frac{8\ln 1/\delta}{n_0}\right)^{1/k}$

doubling dimension of μ : smallest $k \in \mathbb{N}$ such that, for every $x \in \mathbb{R}^d$ and every r > 0: $\mu(B(x, 2r)) \leq 2^k \mu(B(x, r))$.

 \to take $n_0 \propto (k \ln k)^k \ln 1/\delta$ to make $\mathbb{P}_{\mathbf{v},\beta} [\cdots]$ an arbitrarily small constant

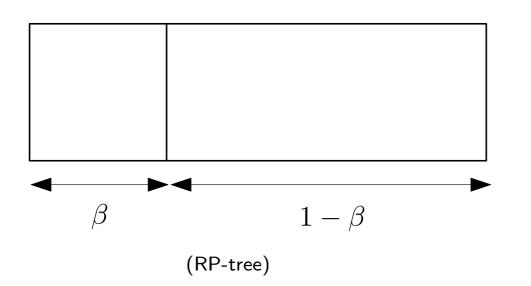
 \rightarrow query time: $O(d((k \ln k)^k + \log n)) \checkmark$ sensitive to intrinsic dimension k requires to know k

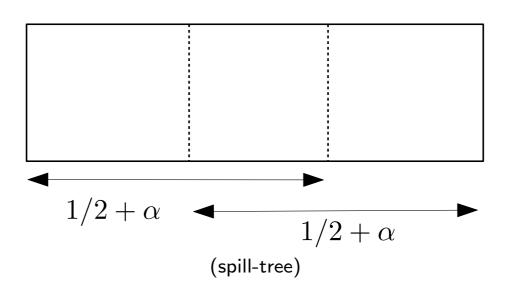
Thm: [Dasgupta, Sinha'13]

Suppose $p_1, \dots, p_n \stackrel{\text{iid}}{\sim} \mu$ continuous probability measure in \mathbb{R}^d with doubling dimension $k \ge 2$. Then $\exists c_0 > 0$ s.t. for any $q \in \mathbb{R}^d$ and $\delta < 1/e$, with proba. $\ge 1 - 3\delta$ over the choice of the p_i 's:

 $\mathbb{P}_{\mathbf{v},\beta}$ [defeatist search does not return $\mathrm{NN}_P(q)$] $\leq c_0(k+\ln n_0) \left(\frac{8 \ln 1/\delta}{n_0}\right)^{1/\kappa}$

Variant: spill-trees (overlapping splits)





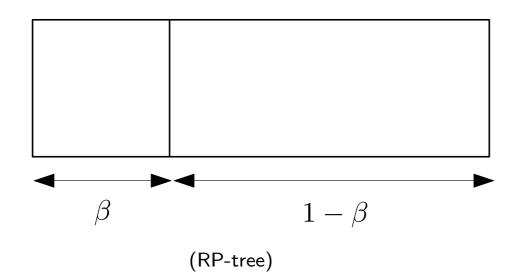
Thm: [Dasgupta, Sinha'13]

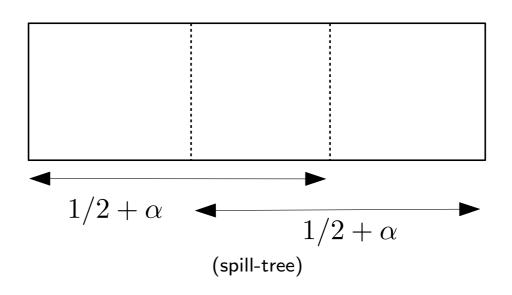
Suppose $p_1, \dots, p_n \stackrel{\text{iid}}{\sim} \mu$ continuous probability measure in \mathbb{R}^d with doubling dimension $k \ge 2$. Then $\exists c_0 > 0$ s.t. for any $q \in \mathbb{R}^d$ and $\delta < 1/e$, with proba. $\ge 1 - 3\delta$ over the choice of the p_i 's:

 $\mathbb{P}_{\mathbf{v},\beta} \left[\text{defeatist search does not return } NN_P(q) \right] \le c_0 (k + \ln n_0) \left(\frac{8 \ln 1/\delta}{n_0} \right)^{1/k}$

Variant: **spill-trees** (overlapping splits)

similar behavior

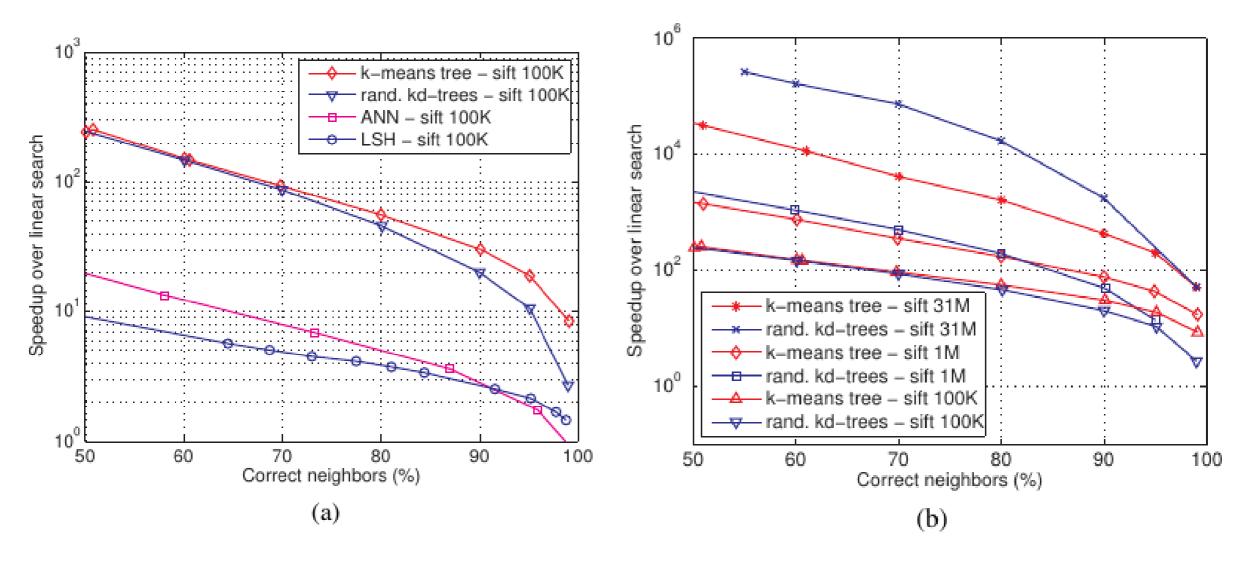




Benchmarking

contenders

effect of size on winners

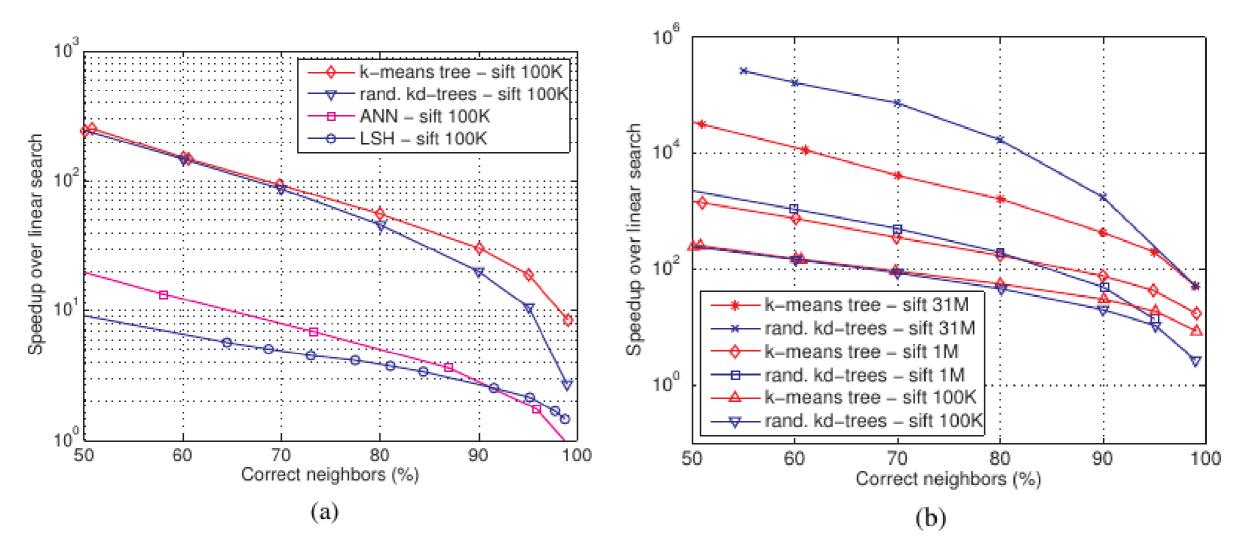


RP-trees vs. other methods on data sets of 100k, 1M and 31M features

Benchmarking

contenders

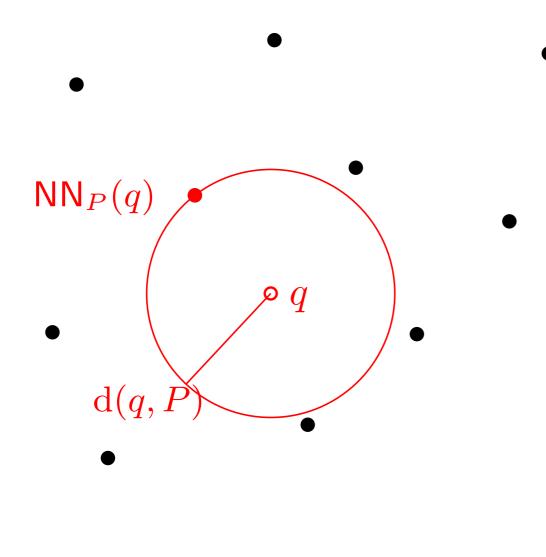
effect of size on winners



Random kd-trees (RP-trees, spill-trees) are fast, scalable and reliable on **data with low-dimensional intrinsic structure**

Locality-Sensitive Hashing

Back to the NN problem



pre-processing input: P

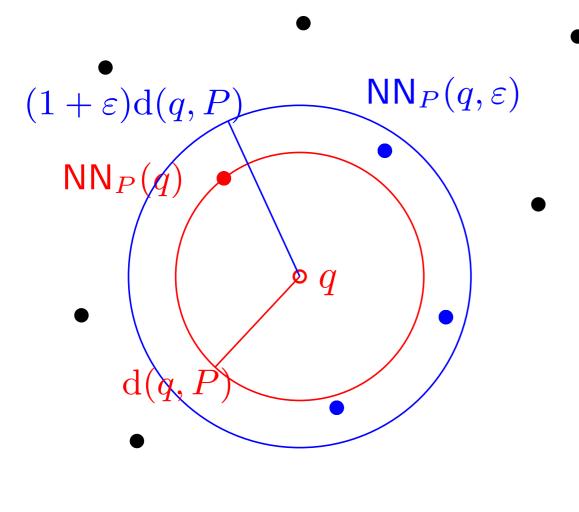
query input: q

goal: find $p \in NN_P(q)$

Curse of Dimensionality: every DS for NN-search has either exponential size or exponential query time (in d) in the worst case.

 \rightarrow holds in theory and in practice for exact NN queries [Weber et al. '98]

Back to the ε -NN problem



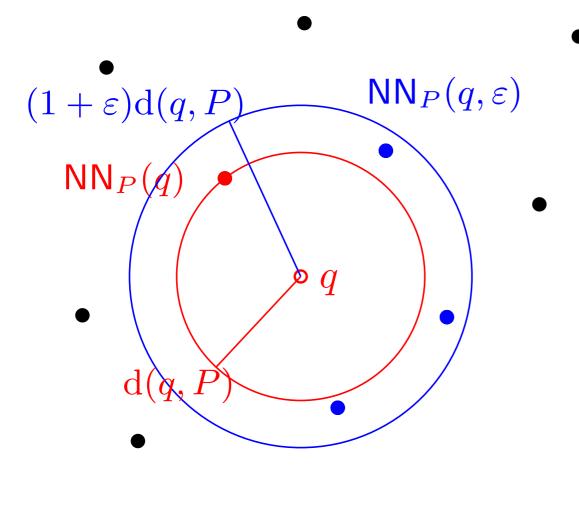
pre-processing input: P, ε query input: qgoal: find $p \in NN_P(q, \varepsilon)$

Curse of Dimensionality: every DS for NN-search has either exponential size or exponential query time (in d) in the worst case.

 \rightarrow holds in theory and in practice for exact NN queries [Weber et al. '98]

 \rightarrow still holds for approximate queries in decision tree model [Arya et al. '98]

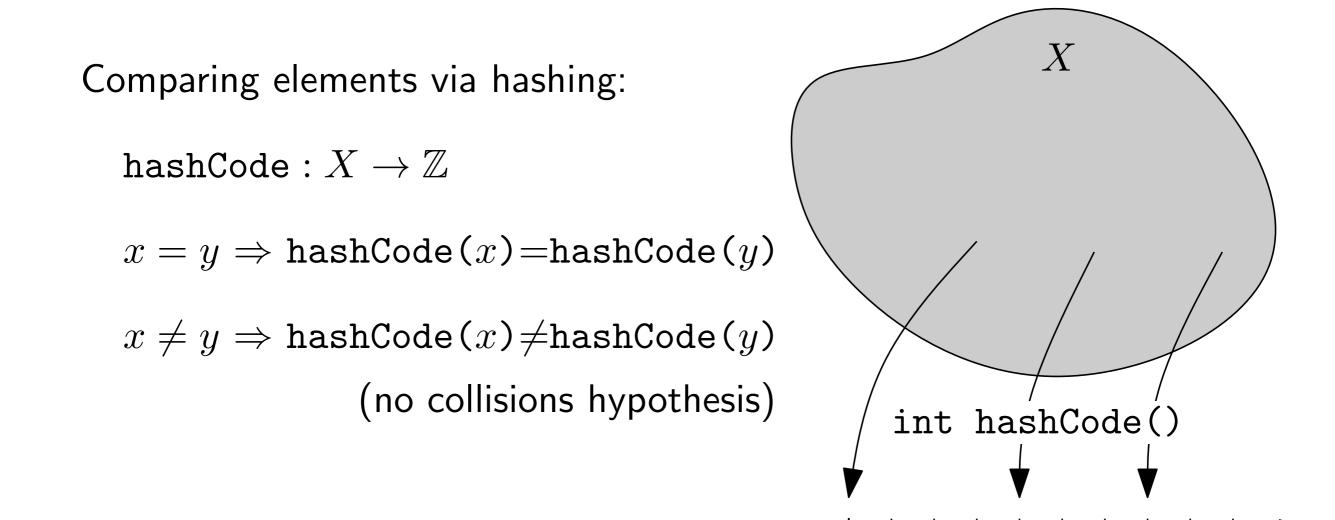
Back to the ε -NN problem



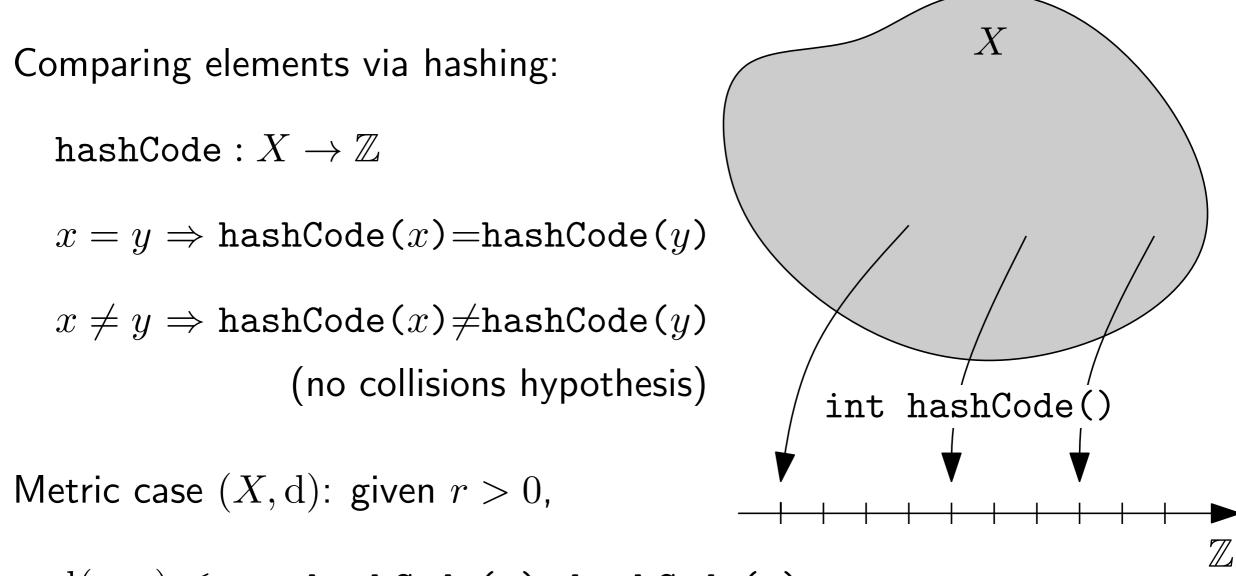
pre-processing input: P, ε query input: qgoal: find $p \in NN_P(q, \varepsilon)$

Curse of Dimensionality: every DS for NN-search has either exponential size or exponential query time (in d) in the worst case.

 \rightarrow holds in theory and in practice for exact NN queries [Weber et al. '98] \rightarrow still holds for approximate queries in decision tree model [Arya et al. '98] \rightarrow no longer true in Real-RAM model thanks to LSH [Indyk, Motwani '98]

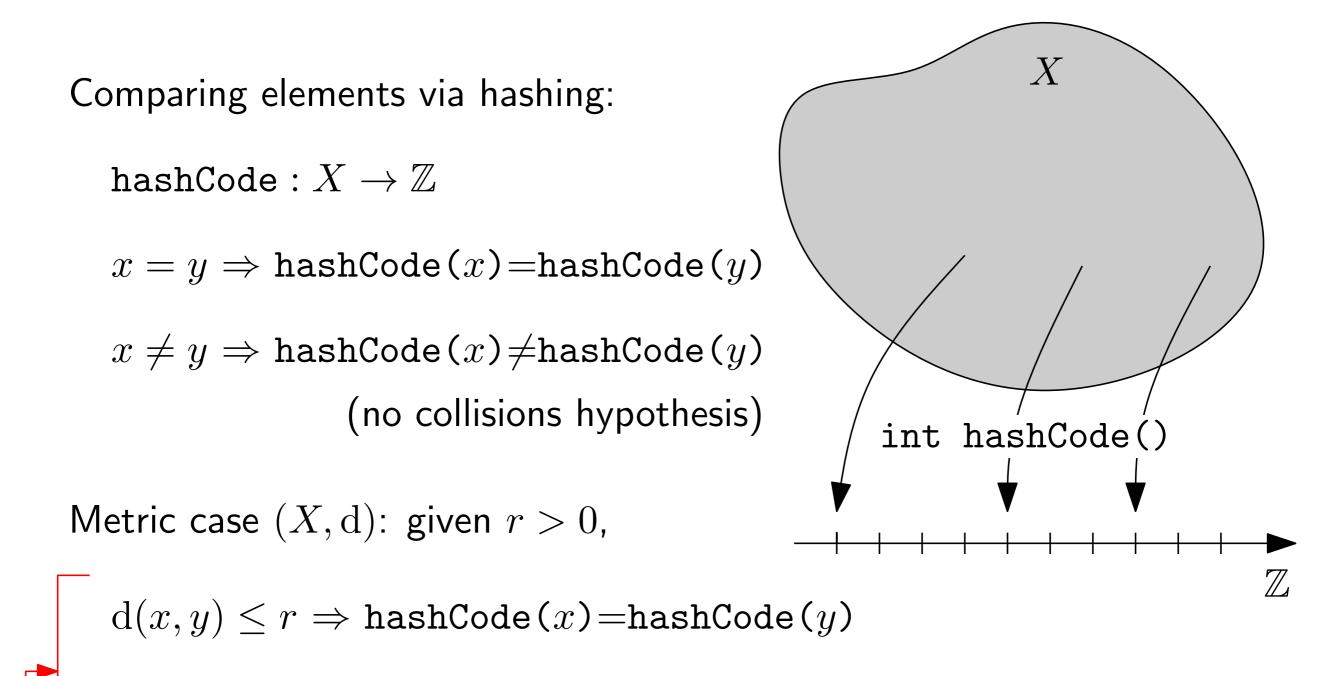


 \mathbb{Z}



$$d(x,y) \leq r \Rightarrow \texttt{hashCode}(x) = \texttt{hashCode}(y)$$

 $d(x,y) > r \Rightarrow hashCode(x) \neq hashCode(y)$



 $d(x,y) > r \Rightarrow hashCode(x) \neq hashCode(y)$

too good to be true \rightarrow allow for some slack

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x, y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

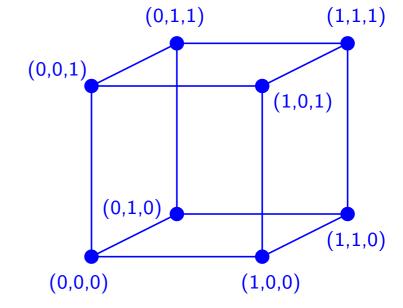
(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x, y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

Example 1: $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$



 \rightarrow take $\mathcal{F} = \{f_i\}_{i=1}^d$ where $f_i(b_1 \cdots b_d) = b_i \mid$ unif. proba. on \mathcal{F}

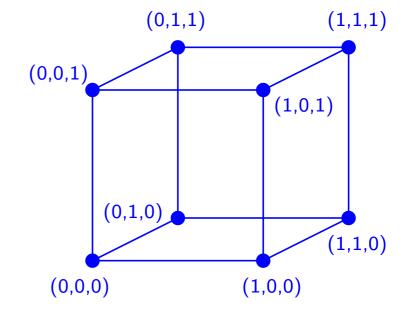
 $\rightarrow \mathcal{F}$ is $(r, r(1 + \varepsilon), 1 - \frac{r}{d}, 1 - \frac{r(1 + \varepsilon)}{d})$ -sensitive for all $r \ge 1$ and $\varepsilon \ge 0$.

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x, y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

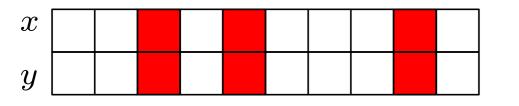
Example 1: $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$



 \rightarrow take $\mathcal{F} = \{f_i\}_{i=1}^d$ where $f_i(b_1 \cdots b_d) = b_i \mid$ unif. proba. on \mathcal{F}

 $\rightarrow \mathcal{F}$ is $(r, r(1 + \varepsilon), 1 - \frac{r}{d}, 1 - \frac{r(1 + \varepsilon)}{d})$ -sensitive for all $r \ge 1$ and $\varepsilon \ge 0$.

proof: $\forall x, y, \mathbb{P}_f[f(x) = f(y)] = \frac{d - d_{\mathcal{H}}(x, y)}{d} = 1 - \frac{d_{\mathcal{H}}(x, y)}{d}$



 $\mathrm{d}_{\mathcal{H}}(x,y)$ bits differ $\Rightarrow \, d - \mathrm{d}_{\mathcal{H}}(x,y)$ functions make x and y collide

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x,y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

Example 2: $(X, d) = (\mathbb{R}^d, \|\cdot\|_2)$ $\rightarrow \text{take } \mathcal{F} = \{f_{\mathbf{v},b}\}_{\mathbf{v}\in\mathbb{R}^d}^{b\in[0,r]} \text{ where } f_{\mathbf{v},b}(x) = \lfloor \frac{x \cdot \mathbf{v} + b}{r} \rfloor$ $\rightarrow \text{choose } \mathbf{v} = (v_1, \cdots, v_d) \text{ with } v_i \sim \mathcal{N}(0, 1), \text{ and } b \text{ uniformly in } [0, r]$ $\rightarrow \mathcal{F} \text{ is } (r, r(1 + \varepsilon), p_1, p_2) \text{ sensitive for } p_1 = g(1) \text{ and } p_2 = g(1 + \varepsilon),$ where $g(\kappa) = 1 - 2\text{cdf}(-r/\kappa) - \frac{2}{\sqrt{2\pi}r/\kappa}(1 - e^{-r^2/2\kappa^2})$ $\leftarrow \text{cumulative density func. of normal distrib.}$

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x, y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

Lemma [Johnson, Lindenstrauss 84]:

For any dimensions 0 < k < d there is a probability distribution μ over the projections $\mathbb{R}^d \to \mathbb{R}^k$ such that, given any set P of n points in \mathbb{R}^d and any $\varepsilon \in (0,1)$ with $k > 10 \ln n/\varepsilon^2$, a projection $\pi : \mathbb{R}^d \to \mathbb{R}^k$ sampled at random from μ satisfies w.h.p.

 $\forall p, q \in P, \ (1-\varepsilon) \| p - q \| \le \| \pi(p) - \pi(q) \| \le (1+\varepsilon) \| p - q \|$

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

- $d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$
- $d(x,y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

\rightarrow General idea:

- choose k-dimensional vector of random functions $(f_1, \cdots, f_k) \in \mathcal{F}^k$
- pre-process \boldsymbol{P} by hashing its points into the corresponding hash table
- given $q \in X$, hash q and choose collision with smallest distance

Def: Given $r_1 < r_2$, $p_1 > p_2$ and $\mathcal{U} \subset \mathbb{N}$, a family \mathcal{F} of hash functions $f: (X, d) \to \mathcal{U}$ is (r_1, r_2, p_1, p_2) -sensitive if $\forall x, y \in X$,

•
$$d(x, y) \le r_1 \Rightarrow \mathbb{P}[f(x) = f(y)] \ge p_1$$

• $d(x, y) \ge r_2 \Rightarrow \mathbb{P}[f(x) = f(y)] \le p_2$

(probability is over a random choice of function according to a given probability distribution over \mathcal{F})

ightarrow General idea:

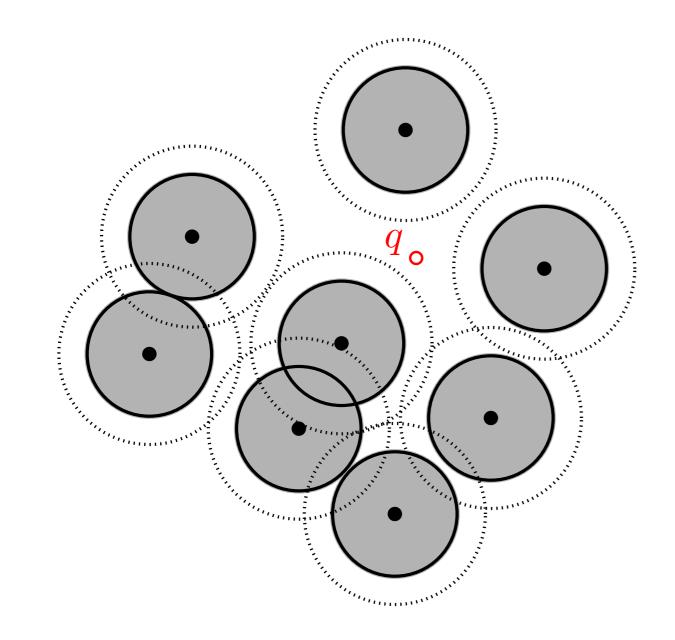
- choose k-dimensional vector of random functions $(f_1, \cdots, f_k) \in \mathcal{F}^k$
- pre-process P by hashing its points into the corresponding hash table
- given $q \in X$, hash q and choose collision with smallest distance

Technical detail: family works only for fixed r_1, r_2

 \rightarrow fix $r_1 = r$ and $r_2 = r(1 + \varepsilon)$, and solve (r, ε) -NN query

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.



Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Step 1: boost the sensitivity of the hash family

$$\mathcal{G} = \{g = (f_1, \cdots, f_k) \in \mathcal{F}^k \mid f_1, \cdots, f_k \text{ chosen randomly in } \mathcal{F}\}$$

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Step 1: boost the sensitivity of the hash family

$$\mathcal{G} = \{g = (f_1, \cdots, f_k) \in \mathcal{F}^k \mid f_1, \cdots, f_k \text{ chosen randomly in } \mathcal{F}\}\$$

$$\rightarrow \forall x, y, d(x, y) \leq r \Rightarrow \mathbb{P}[g(x) = g(y)] \geq p_1^k \text{ (coords. are independent)}$$

 $d(x, y) > r(1 + \varepsilon) \Rightarrow \mathbb{P}[g(x) = g(y)] \leq p_2^k$

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

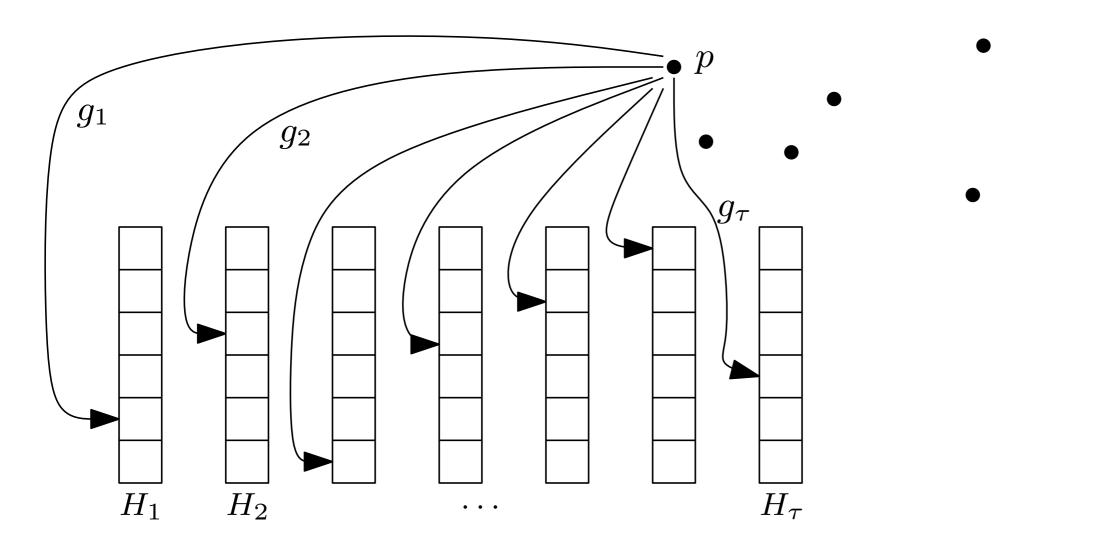
Step 2: pre-process the data points

- choose τ random functions g_1,\cdots,g_τ from boosted hash family \mathcal{G} ,
- initialise au hash tables $H_1, \cdots, H_{ au}$
- $\forall i = 1, \dots, \tau$, hash every point $p \in P$ into H_i using $g_i(p)$ as the key
- use chaining to store the points in the same entry of H_i

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

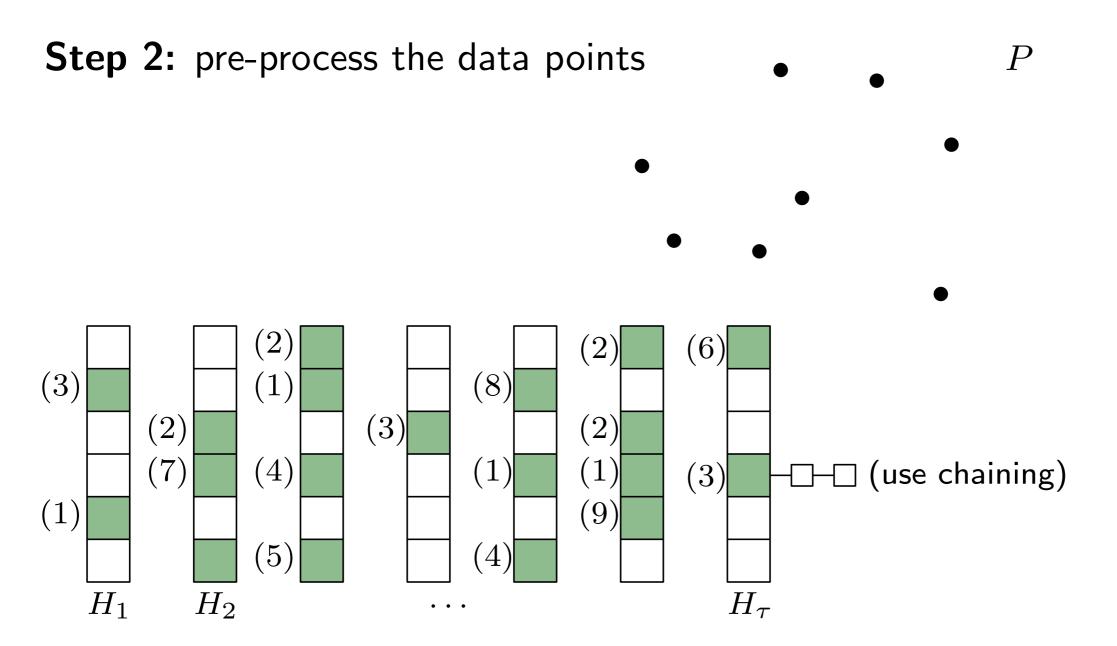
Step 2: pre-process the data points



P

Goal: pre-process P such that, for any query point q,

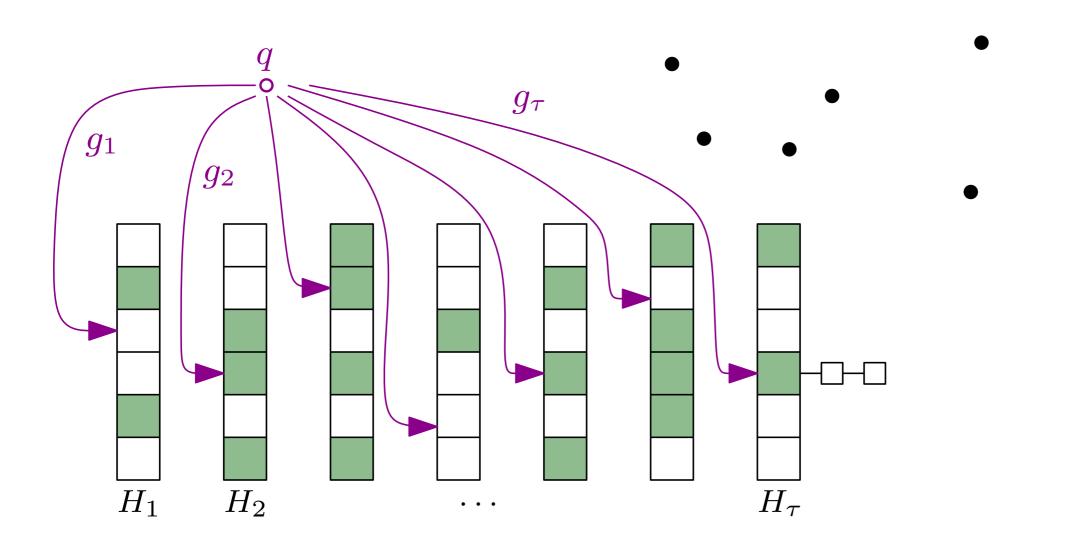
- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.



Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Step 3: hash the query point using the g_i .



P

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Step 3: hash the query point using the g_i

if there are more than 2τ collisions then return NO

else let p_1, \cdots, p_l be the collisions $(l \leq 2\tau)$:

if some p_j is such that $d(p_j, q) \leq r(1 + \varepsilon)$ then return YES and p_j else return NO

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Analysis in a nutshell:

- test $d(p_j, q) \leq r(1 + \varepsilon) \implies$ answer is NO whenever $d(q, P) > r(1 + \varepsilon)$

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Analysis in a nutshell:

- test $d(p_j, q) \le r(1 + \varepsilon) \implies$ answer is NO whenever $d(q, P) > r(1 + \varepsilon)$
- if $\exists p \in P$ s.t. $d(p,q) \leq r$ then:
 - for any fixed $i \in \{1, \dots, \tau\}$, $\mathbb{P}[p \text{ collides with } q \text{ in } H_i] \ge p_1^k$

 $\Rightarrow \mathbb{P}[p \text{ collides with } q \text{ in } H_i \text{ for at least one } i] \geq 1 - (1 - p_1^k)^{\tau}$

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Analysis in a nutshell:

- test $d(p_j, q) \le r(1 + \varepsilon) \implies$ answer is NO whenever $d(q, P) > r(1 + \varepsilon)$
- if $\exists p \in P$ s.t. $d(p,q) \leq r$ then:
 - for any fixed $i \in \{1, \dots, \tau\}$, $\mathbb{P}[p \text{ collides with } q \text{ in } H_i] \ge p_1^k$

 $\Rightarrow \mathbb{P}[p \text{ collides with } q \text{ in } H_i \text{ for at least one } i] \geq 1 - (1 - p_1^k)^{\tau}$

• $\mathbb{P}[\text{total number of collisions} > 2\tau] \leq \frac{np_2^k}{2}$ (Markov's inequality)

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Analysis in a nutshell:

- test $d(p_j, q) \le r(1 + \varepsilon) \implies$ answer is NO whenever $d(q, P) > r(1 + \varepsilon)$
- if $\exists p \in P$ s.t. $d(p,q) \leq r$ then:
 - for any fixed $i \in \{1, \dots, \tau\}$, $\mathbb{P}[p \text{ collides with } q \text{ in } H_i] \ge p_1^k$

 $\Rightarrow \mathbb{P}[p \text{ collides with } q \text{ in } H_i \text{ for at least one } i] \geq 1 - (1 - p_1^k)^{\tau}$

• $\mathbb{P}[\text{total number of collisions} > 2\tau] \leq \frac{np_2^k}{2}$ (Markov's inequality)

$$\Rightarrow \mathbb{P}[\text{answer is YES}] \ge 1 - (1 - p_1^k)^{\tau} - \frac{np_2^k}{2}$$
 (union bound)

Goal: pre-process P such that, for any query point q,

- if $d(q, P) \leq r$ then answer YES and return some $p \in NN_P(q, r, \varepsilon)$,
- if $d(q, P) > r(1 + \varepsilon)$ then answer NO,
- else $(r < d(q, P) \le r(1 + \varepsilon))$ give any of the above answers.

Analysis in a nutshell:

- test $d(p_j, q) \leq r(1 + \varepsilon) \implies$ answer is NO whenever $d(q, P) > r(1 + \varepsilon)$
- ▶ in Hamming cube: let $k := \log_{1/p_2} n \le \frac{d}{1+\varepsilon} \ln n$ and $\tau := n^{\ln p_1/\ln p_2} \le n^{1/1+\varepsilon}$:

$$Pr[\text{success}] \ge \frac{1}{2} - \frac{1}{e}$$

query time in $O(\tau(k+d)) \subseteq O\left(\frac{d}{1+\varepsilon}n^{1/1+\varepsilon} \ln n\right)$

$$\Rightarrow \mathbb{P}[\text{answer is YES}] \ge 1 - (1 - p_1^k)^{\tau} - \frac{np_2^k}{2} \pmod{\text{bound}}$$

From $(r,\varepsilon)\text{-}\mathsf{NN}$ to $\varepsilon\text{-}\mathsf{NN}$

► Hamming cube $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$

Observation: inter-point distances lie within $\{0, 1, 2, \dots, d\}$

From $(r,\varepsilon)\text{-}\mathsf{NN}$ to $\varepsilon\text{-}\mathsf{NN}$

► Hamming cube $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$

Observation: inter-point distances lie within $\{0, 1, 2, \cdots, d\}$

 \rightarrow solve case $d_{\mathcal{H}}(q, P) = 0$ independently (use lexicographical sorting) \rightarrow take geometric sequence $r_0 = 1$, $r_1 = 1 + \varepsilon$, \cdots , $r_j = (1 + \varepsilon)^j$, \cdots

$$\to$$
 for $j = 0$ to $\lceil \log_{1+\varepsilon} d \rceil = O(\frac{1}{\varepsilon} \log d)$, solve (r_j, r_{j+1}) -NN query

- \rightarrow let j_l be the lowest j s.t. the answer to (r_j, r_{j+1}) -MM query is YES
- \rightarrow return r_{j_l} and the output point of the (r_{j_l}, r_{j_l+1}) -NN query
- \rightarrow if no YES answer, return d and any point of P

► Hamming cube $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$

Observation: inter-point distances lie within $\{0, 1, 2, \dots, d\}$

$$\rightarrow \text{query time in } O\left(\frac{d\log d}{\varepsilon(1+\varepsilon)} n^{1/1+\varepsilon} \log n\right)$$
(becomes $O\left(\frac{d^2}{1+\varepsilon} n^{1/1+\varepsilon} \log n\right)$ if arithmetic sequence is used)

► Hamming cube $(X, d) = (\{0, 1\}^d, d_{\mathcal{H}})$

Observation: inter-point distances lie within $\{0, 1, 2, \dots, d\}$

$$\rightarrow \text{query time in } O\left(\frac{d\log d}{\varepsilon(1+\varepsilon)} n^{1/1+\varepsilon} \log n\right)$$
(becomes $O\left(\frac{d^2}{1+\varepsilon} n^{1/1+\varepsilon} \log n\right)$ if arithmetic sequence is used)

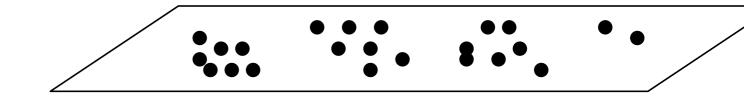
Observation: deterministically, $r_{j_l} \ge d_{\mathcal{H}}(q, P)/(1 + \varepsilon)$

 \Rightarrow output $\in NN_P(q, \varepsilon(2 + \varepsilon))$ iff LSH data structure works for $j = j_l$

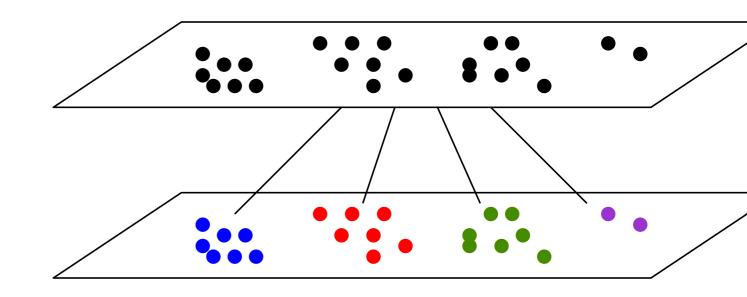
$$\Rightarrow \mathbb{P}[\textit{success}] \ge \frac{1}{2} - \frac{1}{e}$$

- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences

- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences

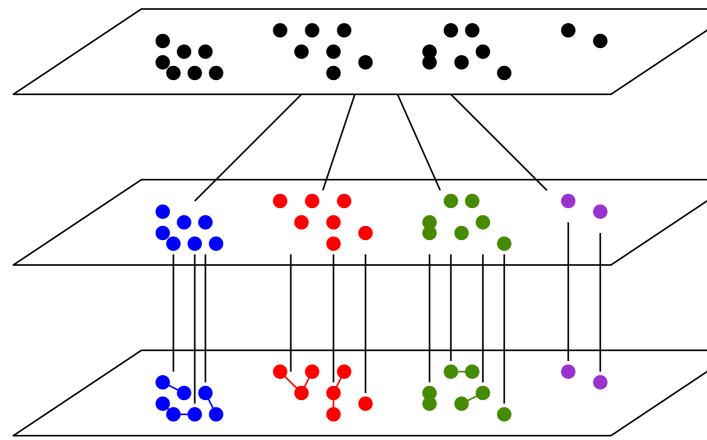


- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences

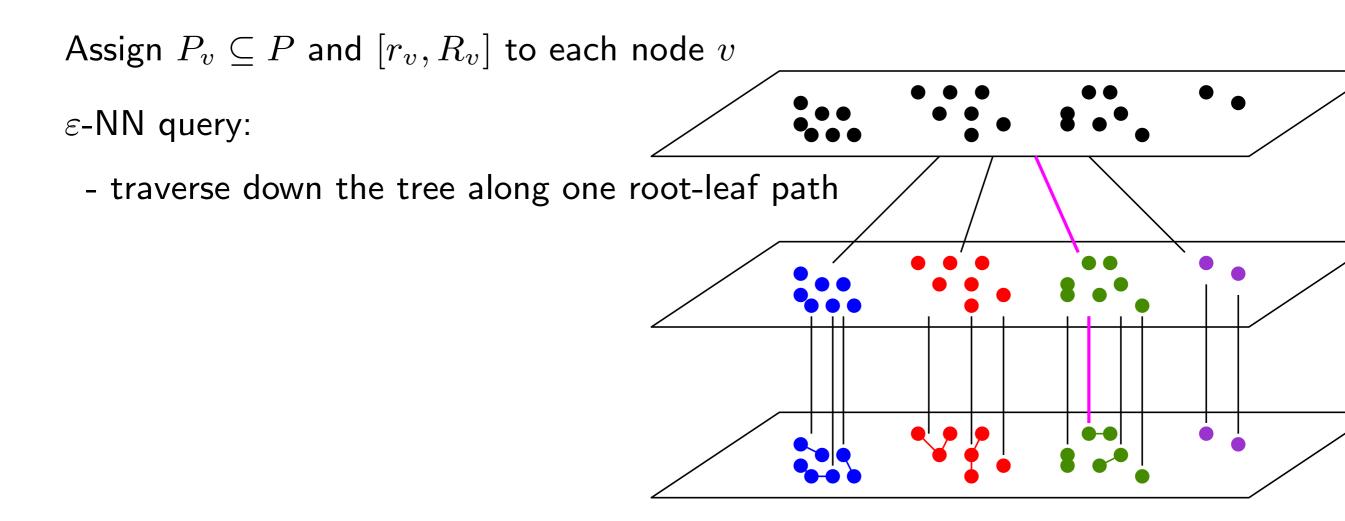


- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences

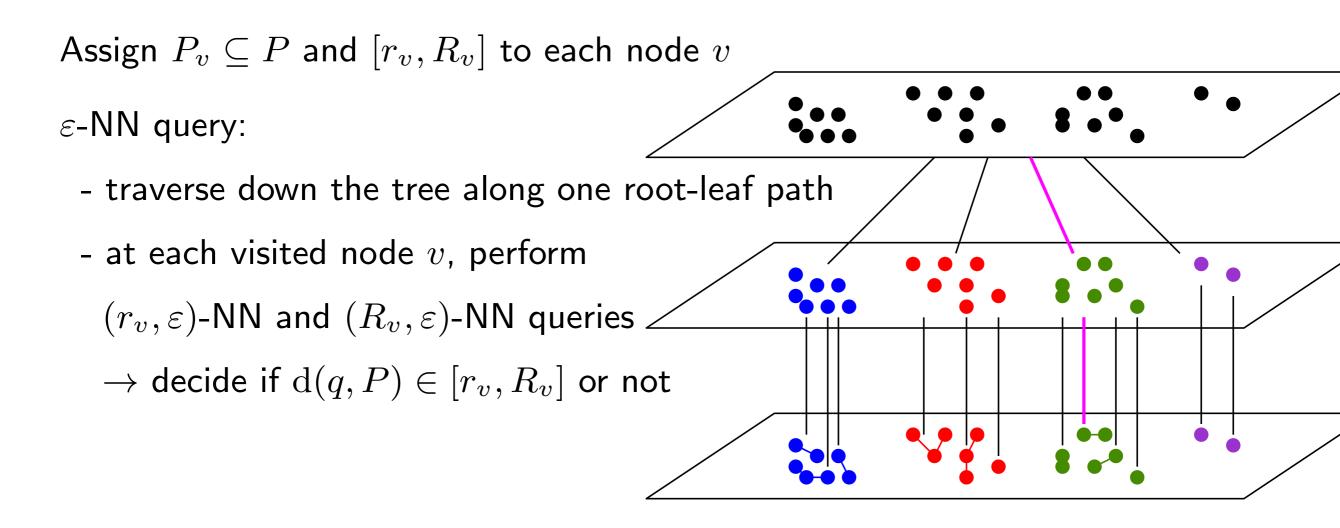
Assign $P_v \subseteq P$ and $[r_v, R_v]$ to each node v



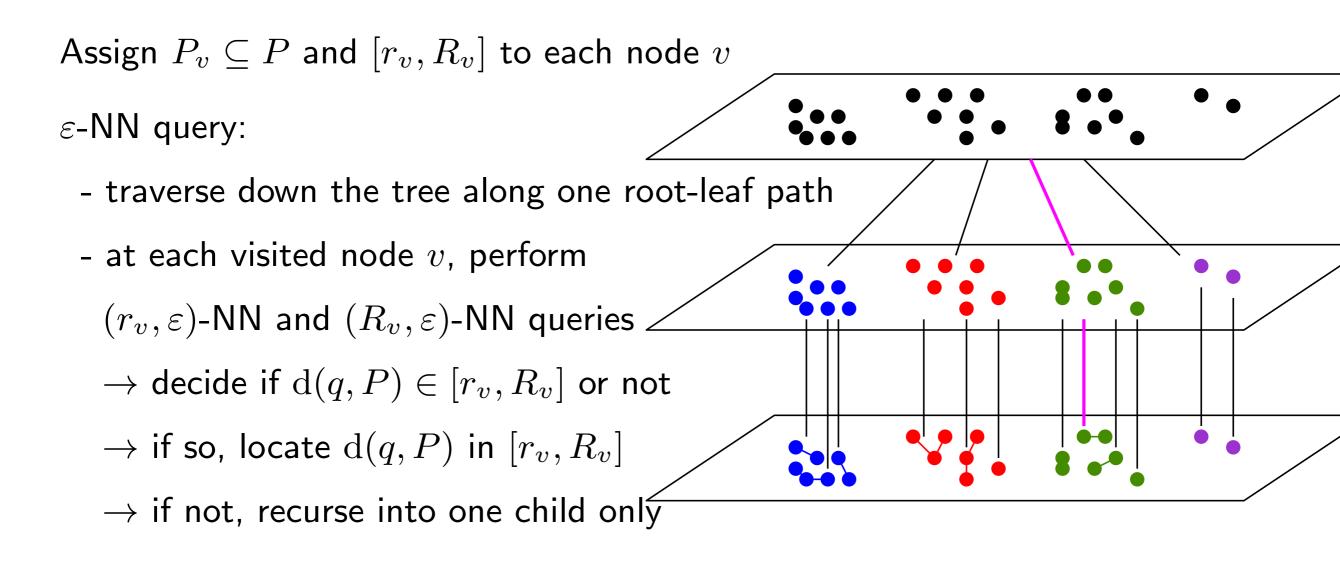
- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences



- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences



- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences



- General case: use hierarchical clustering tree [Har-Peled'01]
 - consider geometric sequences of scales as before
 - cluster data points in order to bound the lengths of the sequences

Assign
$$P_v \subseteq P$$
 and $[r_v, R_v]$ to each node v
 ε -NN query:
- traverse down the tree along one root-leaf path
- at each visited node v , perform
 (r_v, ε) -NN and (R_v, ε) -NN queries
 \rightarrow decide if $d(q, P) \in [r_v, R_v]$ or not
 \rightarrow if so, locate $d(q, P)$ in $[r_v, R_v]$
 \rightarrow if not, recurse into one child only

 $O(\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ (r,ε) -NN queries per ε -NN query

Take-Home Messages

• (Approximate) NN search requires an exponential amount of resources (space/time) in the algebraic comparison tree model [Arya et al. 98].

- Using random hashing allows to beat the *curse of dimensionality*.
- The price to pay is that algorithms become almost linear \rightarrow in practice, a trade-off must be found.
- The complexity of the exact NN search problem is not fully understood.

 \rightarrow what about *reverse* NN search? [Cheong et al. 09], [Arthur, O. 10], ...